[1]
J. Robert, W. Messler, M. Jou, Review of control systems for resistance spot welding: past and current practices and emerging trends, Sci. Technol. Weld. Join. 1 (1) (1996) 1–9.
DOI: 10.1179/136217196790108360
Google Scholar
[2]
M. Pouranvari, S.P.H. Marashi, Critical review of automotive steels spot welding: process, structure and properties, Sci. Technol. Weld. Join. 18 (5) (2013) 361–403.
DOI: 10.1179/1362171813y.0000000120
Google Scholar
[3]
N.T. Williams, J.D. Parker, Review of resistance spot welding of steel sheets part 1: modelling and control of weld nugget formation, Int. Mater. Rev. 49 (2) (2004) 45–75.
DOI: 10.1179/095066004225010523
Google Scholar
[4]
D. Stavrov, H.E.N. Bersee, Resistance welding of thermoplastic composites – an overview, Compos. A: Appl. Sci. Manuf. 36 (1) (2005) 39–54.
DOI: 10.1016/j.compositesa.2004.06.030
Google Scholar
[5]
Jagadeesha T., & Jothi, T. J. S. (2015). Studies on the influence of process parameters on the AISI 316L resistance spot-welded specimens. The International Journal of Advanced Manufacturing Technology, 93(1-4), 73–88.
DOI: 10.1007/s00170-015-7693-y
Google Scholar
[6]
Karthikeyan, R., & Balasubramaian, V. (2017). Optimization of Electrical Resistance Spot Welding and Comparison with Friction Stir Spot Welding of AA2024-T3 Aluminum Alloy Joints. Materials Today: Proceedings, 4(2), 1762–1771.
DOI: 10.1016/j.matpr.2017.02.018
Google Scholar
[7]
Janardhan, G., Mukhopadhyay, G., Kishore, K. et al. Resistance Spot Welding of Dissimilar Interstitial-Free and High-Strength Low-Alloy Steels. J. of Materi Eng and Perform 29, 3383–3394 (2020).
DOI: 10.1007/s11665-020-04857-z
Google Scholar
[8]
Badkoobeh, F., Mostaan, H., Rafiei, M. et al. A Study on Phase Evolutions and Tensile-Shear Performance of Dissimilar Resistance Spot Welds Formed Between AISI 430 Ferritic Stainless Steel and AISI 321 Austenitic Stainless Steel. J. of Materi Eng and Perform (2022).
DOI: 10.1007/s11665-022-07451-7
Google Scholar
[9]
Hasanbaşoğlu, A., & Kaçar, R. (2007). Resistance spot weldability of dissimilar materials (AISI 316L–DIN EN 10130-99 steels). Materials & Design, 28(6), 1794–1800.
DOI: 10.1016/j.matdes.2006.05.013
Google Scholar
[10]
Zhang, X., Yao, F., Ren, Z., & Yu, H. (2018). Effect of Welding Current on Weld Formation, Microstructure, and Mechanical Properties in Resistance Spot Welding of CR590T/340Y Galvanized Dual Phase Steel. Materials, 11(11), 2310.
DOI: 10.3390/ma11112310
Google Scholar
[11]
Rajarajan, C., Sivaraj, P., Sonar, T., Raja, S., & Mathiazhagan, N. (2022). Resistance spot welding of advanced high strength steel for fabrication of thin-walled automotive structural frames. Forces in Mechanics, 7, 100084.
DOI: 10.1016/j.finmec.2022.100084
Google Scholar
[12]
Sivaraj, P., Seeman, M., Kanagarajan, D., & Seetharaman, R. (2020). Influence of welding parameter on mechanical properties and microstructural features of resistance spot welded dual phase steel sheets joint. Materials Today: Proceedings, 22(3), 558-562.
DOI: 10.1016/j.matpr.2019.08.201
Google Scholar
[13]
Sreehari, M., & Bhaskar, G. B. (2019). Experimental investigations on resistance spot welding for producing indentation free joints on AISI 409M grade stainless steels. Materials Research Express, 6(4), 046527.
DOI: 10.1088/2053-1591/aafa97
Google Scholar
[14]
Özyürek, D. (2008). An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel. Materials & Design, 29(3), 597–603.
DOI: 10.1016/j.matdes.2007.03.008
Google Scholar
[15]
Manladan, S.M., Yusof, F., Ramesh, S. et al. A review on resistance spot welding of aluminum alloys. Int J Adv Manuf Technol 90, 605–634 (2017).
DOI: 10.1007/s00170-016-9225-9
Google Scholar
[16]
Dobosy, Á., Gáspár, M., & Török, I. (2018). Resistance Spot Welding of 7075 Aluminium Alloy. Vehicle and Automotive Engineering 2, 679–693.
DOI: 10.1007/978-3-319-75677-6_58
Google Scholar
[17]
Wei, P. S., & Wu, T. H. (2013). Numerical study of electrode geometry effects on resistance spot welding. Science and Technology of Welding and Joining, 18(8), 661–670.
DOI: 10.1179/174329313x13759662488396
Google Scholar
[18]
Wei, S. T., Liu, R. D., Lv, D., Lin, L., Xu, R. J., Guo, J. Y., … Lu, X. F. (2014). Weldability and mechanical properties of similar and dissimilar resistance spot welds of three-layer advanced high strength steels. Science and Technology of Welding and Joining, 20(1), 20–26.
DOI: 10.1179/1362171814y.0000000250
Google Scholar
[19]
Ozsarac, U. (2012). Investigation of Mechanical Properties of Galvanized Automotive Sheets Joined by Resistance Spot Welding. Journal of Materials Engineering and Performance, 21(5), 748–755.
DOI: 10.1007/s11665-012-0189-0
Google Scholar
[20]
Kolařík, L., Sahul, M., Kolaříková, M., Sahul, M., & Turňa, M. (2014). Resistance Spot Welding of Low Carbon Steel to Austenitic CrNi Stainless Steel. Advanced Materials Research, 875-877, 1499–1502.
DOI: 10.4028/www.scientific.net/amr.875-877.1499
Google Scholar
[21]
Safari, M., & Mostaan, H. (2016). Experimental investigation of the effects of process parameters on the strength of eutectoid steel (AISI 1075) sheet resistance spot welds. Metallurgical Research & Technology, 113(3), 305.
DOI: 10.1051/metal/2016005
Google Scholar
[22]
Vignesh, K., Elaya Perumal, A., & Velmurugan, P. (2017). Optimization of resistance spot welding process parameters and microstructural examination for dissimilar welding of AISI 316L austenitic stainless steel and 2205 duplex stainless steel. The International Journal of Advanced Manufacturing Technology, 93(1-4), 455–465.
DOI: 10.1007/s00170-017-0089-4
Google Scholar
[23]
Fujii, T., Hara, T., & Nakata, K. (2014). Effect of Surface Resistivity on Resistance Spot Welding of Aluminum Alloy Sheets. Materials & Design, 63, 266-273
DOI: 10.1016/j.matdes.2013.09.031
Google Scholar
[24]
Watanabe, T., Ohta, H., & Nagumo, Y. (2014). Effect of Surface Resistivity on Resistance Spot Welding of High-Strength Steel Sheets. Tetsu-to-Hagane, 100(9), 747-753
Google Scholar
[25]
Youssef, A. H., El-Batahgy, A. E., & Hassan, M. M. (2010). Influence of Surface Resistivity on the Quality of Resistance Spot Welds in Low Carbon Steel Sheets. Materials & Design, 31(3), 1413-1420
DOI: 10.1016/j.matdes.2010.05.039
Google Scholar
[26]
Al-Hazmy, S., & Al-Mazrouee, A. (2015). Effect of Surface Preparation and Resistivity on Resistance Spot Welding of 304 Stainless Steel. International Journal of Advanced Manufacturing Technology, 76(9-12), 1993-2003.
Google Scholar
[27]
Wang, X. J., Zhou, J. H., Yan, H. C., & Pang, C. K. (2018). Quality monitoring of spot welding with advanced signal processing and data-driven techniques. Transactions of the Institute of Measurement and Control, 40, 2291–2302.
DOI: 10.1177/0142331217700703
Google Scholar
[28]
Khuenkaew, T., & Kanlayasiri, K. (2019). Resistance spot welding of SUS316L austenitic/SUS425 ferritic stainless steels: weldment characteristics, mechanical properties, phase transformation and solidifcation. Metals, 9, 710.
DOI: 10.3390/met9060710
Google Scholar