[1]
W. Sun, W. Di Liu, Q. Liu, and Z. G. Chen, "Advances in thermoelectric devices for localized cooling," Chemical Engineering Journal, vol. 450. Elsevier B.V., Dec. 15, 2022.
DOI: 10.1016/j.cej.2022.138389
Google Scholar
[2]
B. Bakthavatchalam, K. Habib, R. Saidur, and B. B. Saha, "Cooling performance analysis of nanofluid assisted novel photovoltaic thermoelectric air conditioner for energy efficient buildings," Appl Therm Eng, vol. 213, Aug. 2022.
DOI: 10.1016/j.applthermaleng.2022.118691
Google Scholar
[3]
S. A. Abdul-Wahab et al., "Design and experimental investigation of portable solar thermoelectric refrigerator," Renew Energy, vol. 34, no. 1, p.30–34, Jan. 2009.
DOI: 10.1016/j.renene.2008.04.026
Google Scholar
[4]
X. Hao, B. Peng, G. Xie, and Y. Chen, "Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink," Appl Therm Eng, vol. 100, p.170–178, May 2016.
DOI: 10.1016/j.applthermaleng.2016.01.131
Google Scholar
[5]
D. Zhao and G. Tan, "A review of thermoelectric cooling: Materials, modeling and applications," Applied Thermal Engineering, vol. 66, no. 1–2. p.15–24, May 2014.
DOI: 10.1016/j.applthermaleng.2014.01.074
Google Scholar
[6]
Q. shi Wan, J. jun Su, Y. yi Huang, Y. ping Wang, and X. Liu, "Numerical and Experimental Investigation on Symmetrical Cross Jet of Localized Air Conditioning System with Thermoelectric Cooling Devices in Commercial Vehicles," International Journal of Refrigeration, vol. 140, p.29–38, Aug. 2022.
DOI: 10.1016/j.ijrefrig.2022.05.004
Google Scholar
[7]
L. Chen, R. Liu, and X. Shi, "General principles of thermoelectric technology," in Thermoelectric Materials and Devices, Elsevier, 2021, p.1–18.
DOI: 10.1016/b978-0-12-818413-4.00001-6
Google Scholar
[8]
W. Thomson, "On a mechanical theory of thermoelectric currents," Proc. Roy. Soc. Edinburgh, vol. 3, p.91–98, 1851, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0013367912&partnerID=40&md5=fc865a5b0ce112e62a69e00ce9fb4a6e
Google Scholar
[9]
J. C. A. Peltier, Nouvelles expériences sur la caloricité des courans électriques. 1834.
Google Scholar
[10]
H. Jouhara et al., "Thermoelectric generator (TEG) technologies and applications," International Journal of Thermofluids, vol. 9. Elsevier B.V., Feb. 01, 2021.
DOI: 10.1016/j.ijft.2021.100063
Google Scholar
[11]
M. Naito, T. Yokoyama, K. Hosokawa, and K. Nogi, Nanoparticle technology handbook. Elsevier, 2018.
Google Scholar
[12]
O. Ostroverkhova, Handbook of organic materials for electronic and photonic devices. Woodhead Publishing, 2018.
Google Scholar
[13]
T. Subramaniam and R. Premanand, "A Device to Harness the Power of the Tides and Waves off Every Coast," Journal of Environmental Engineering and Science,AASCIT,USA, vol. 2, p.74–77, Jan. 2015.
Google Scholar
[14]
K. H. J. Buschow, Encyclopedia of materials: science and technology, vol. 1. Elsevier, 2001.
Google Scholar
[15]
G. Koster, M. Huijben, and G. Rijnders, Epitaxial growth of complex metal oxides. Elsevier, 2015.
Google Scholar
[16]
B. Yadali Jamaloei and K. Asghari, "The Joule-Thomson effect in petroleum fields: I. Well testing, multilateral/slanted wells, hydrate formation, and drilling/completion/production operations," Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 37, no. 2, p.217–224, Jan. 2015.
DOI: 10.1080/15567036.2010.551258
Google Scholar
[17]
T. W. B. Riyadi, B. R. Utomo, M. Effendy, A. T. Wijayanta, and H. H. Al-Kayiem, "Effect of thermal cycling with various heating rates on the performance of thermoelectric modules," International Journal of Thermal Sciences, vol. 178, Aug. 2022.
DOI: 10.1016/j.ijthermalsci.2022.107601
Google Scholar
[18]
R. Merienne, J. Lynn, E. McSweeney, and S. M. O'Shaughnessy, "Thermal cycling of thermoelectric generators: The effect of heating rate," Appl Energy, vol. 237, p.671–681, Mar. 2019.
DOI: 10.1016/j.apenergy.2019.01.041
Google Scholar
[19]
H. Jouhara et al., "Thermoelectric generator (TEG) technologies and applications," International Journal of Thermofluids, vol. 9. Elsevier B.V., Feb. 01, 2021.
DOI: 10.1016/j.ijft.2021.100063
Google Scholar
[20]
S. Patidar, "Applications of Thermoelectric Energy: A Review," Int J Res Appl Sci Eng Technol, vol. 6, no. 5, p.1992–1996, May 2018.
DOI: 10.22214/ijraset.2018.5325
Google Scholar
[21]
H. Y. Zhang, "A general approach in evaluating and optimizing thermoelectric coolers," International Journal of Refrigeration, vol. 33, no. 6, p.1187–1196, Sep. 2010.
DOI: 10.1016/j.ijrefrig.2010.04.007
Google Scholar
[22]
J. Yu, H. Zhao, and K. Xie, "Analysis of optimum configuration of two-stage thermoelectric modules," Cryogenics (Guildf), vol. 47, no. 2, p.89–93, Feb. 2007.
DOI: 10.1016/j.cryogenics.2006.09.010
Google Scholar
[23]
E. S. Jeong, "A new approach to optimize thermoelectric cooling modules," Cryogenics (Guildf), vol. 59, p.38–43, Jan. 2014.
DOI: 10.1016/j.cryogenics.2013.12.003
Google Scholar
[24]
S. B. Riffat and X. Ma, "Improving the coefficient of performance of thermoelectric cooling systems: A review," Int J Energy Res, vol. 28, no. 9, p.753–768, 2004.
DOI: 10.1002/er.991
Google Scholar
[25]
N. A. Sheikh, D. Ling Chuan Ching, and I. Khan, "A comprehensive review on theoretical aspects of nanofluids: Exact solutions and analysis," Symmetry, vol. 12, no. 5. MDPI, May 01, 2020.
DOI: 10.3390/SYM12050725
Google Scholar
[26]
M. Salem Ahmed, "Nanofluid: New Fluids by Nanotechnology," in Thermophysical Properties of Complex Materials, IntechOpen, 2020.
DOI: 10.5772/intechopen.86784
Google Scholar
[27]
B. Bakthavatchalam et al., "Optimization of thermophysical and rheological properties of mxene ionanofluids for hybrid solar photovoltaic/thermal systems," Nanomaterials, vol. 11, no. 2, p.1–28, Feb. 2021.
DOI: 10.3390/nano11020320
Google Scholar
[28]
P. S. Arshi Banu, B. Dhanapal, T. Mathevan Pillai, B. Chellappa, and R. Sathyamurthy, "Thermodynamic and hydraulic design characteristics of the fin tube heat exchanger," Mater Today Proc, vol. 62, p.2380–2387, Jan. 2022.
DOI: 10.1016/j.matpr.2022.04.853
Google Scholar
[29]
B. Zhao, H. Bi, H. Wang, and Y. Zhou, "Experimental and numerical investigation on frosting of finned-tube heat exchanger considering droplet impingement," Appl Therm Eng, vol. 216, p.119134, 2022.
DOI: 10.1016/j.applthermaleng.2022.119134
Google Scholar
[30]
J. Yu et al., "Numerical prediction of heat transfer performance of plate heat exchanger based on experimental data assimilation to calibrate turbulence model constants," Thermal Science and Engineering Progress, vol. 34, Sep. 2022.
DOI: 10.1016/j.tsep.2022.101433
Google Scholar
[31]
A. Aboul Khail and A. Erişen, "Heat transfer and performance enhancement investigation of novel plate heat exchanger," Thermal Science and Engineering Progress, vol. 34, p.101368, 2022.
DOI: 10.1016/j.tsep.2022.101368
Google Scholar
[32]
"heat-sink-types-of-heat-sink-and-design-of-heat-sink/ Heat Sink, Types of Heat Sink and Design of Heat Sink." [Online]. Available: https://www.electroniclinic.com/
DOI: 10.21236/ad1000573
Google Scholar
[33]
S. H. Kim, C. S. Heu, J. Y. Mok, S. W. Kang, and D. R. Kim, "Enhanced thermal performance of phase change material-integrated fin-type heat sinks for high power electronics cooling," Int J Heat Mass Transf, vol. 184, Mar. 2022.
DOI: 10.1016/j.ijheatmasstransfer.2021.122257
Google Scholar
[34]
P. Bhandari and Y. K. Prajapati, "Influences of tip clearance on flow and heat transfer characterstics of open type micro pin fin heat sink," International Journal of Thermal Sciences, vol. 179, Sep. 2022.
DOI: 10.1016/j.ijthermalsci.2022.107714
Google Scholar
[35]
C. C. Hsieh and Y. H. Li, "The study for saving energy and optimization of led street light heat sink design," Advances in Materials Science and Engineering, vol. 2015, 2015.
DOI: 10.1155/2015/418214
Google Scholar
[36]
T. Truong and N.-T. Nguyen, Simulation and optimization of Tesla valves. 2003.
Google Scholar
[37]
Y. Bao and H. Wang, "Numerical study on flow and heat transfer characteristics of a novel Tesla valve with improved evaluation method," Int J Heat Mass Transf, vol. 187, May 2022.
DOI: 10.1016/j.ijheatmasstransfer.2022.122540
Google Scholar
[38]
Y. Lu et al., "Performance optimisation of Tesla valve-type channel for cooling lithium-ion batteries," Appl Therm Eng, vol. 212, Jul. 2022.
DOI: 10.1016/j.applthermaleng.2022.118583
Google Scholar
[39]
K. Monika, C. Chakraborty, S. Roy, R. Sujith, and S. P. Datta, "A numerical analysis on multi-stage Tesla valve based cold plate for cooling of pouch type Li-ion batteries," Int J Heat Mass Transf, vol. 177, Oct. 2021.
DOI: 10.1016/j.ijheatmasstransfer.2021.121560
Google Scholar
[40]
Z. Liu, W. Q. Shao, Y. Sun, and B. H. Sun, "Scaling law of the one-direction flow characteristics of symmetric Tesla valve," Engineering Applications of Computational Fluid Mechanics, vol. 16, no. 1, p.441–452, 2022.
DOI: 10.1080/19942060.2021.2023648
Google Scholar
[41]
C. R. Ascencio-Hurtado, A. Torres, R. Ambrosio, M. Moreno, J. Álvarez-Quintana, and A. Hurtado-Macías, "N-type amorphous silicon-germanium thin films with embedded nanocrystals as a novel thermoelectric material of elevated ZT," J Alloys Compd, vol. 890, Jan. 2022.
DOI: 10.1016/j.jallcom.2021.161843
Google Scholar
[42]
C. Calleja, A. Torres, M. Moreno, P. Rosales, M. T. Sanz‐Pascual, and M. Velázquez, "A microbolometer fabrication process using polymorphous silicon–germanium films (pm‐SixGey: H) as thermosensing material," physica status solidi (a), vol. 213, no. 7, p.1864–1868, 2016.
DOI: 10.1002/pssa.201532983
Google Scholar
[43]
F. F. Jaldurgam et al., "Optimum sintering method and temperature for cold compact Bismuth Telluride pellets for thermoelectric applications," J Alloys Compd, vol. 877, Oct. 2021.
DOI: 10.1016/j.jallcom.2021.160256
Google Scholar
[44]
A. Nozariasbmarz, B. Poudel, W. Li, H. B. Kang, H. Zhu, and S. Priya, "Bismuth Telluride Thermoelectrics with 8% Module Efficiency for Waste Heat Recovery Application," iScience, vol. 23, no. 7, p.101340, 2020.
DOI: 10.1016/j.isci.2020.101340
Google Scholar
[45]
F. M. El-Makaty, H. K. Ahmed, and K. M. Youssef, "Review: The effect of different nanofiller materials on the thermoelectric behavior of bismuth telluride," Materials and Design, vol. 209. Elsevier Ltd, Nov. 01, 2021.
DOI: 10.1016/j.matdes.2021.109974
Google Scholar
[46]
Y. S. Lee et al., "Research for Brazing Materials of High-Temperature Thermoelectric Modules with CoSb3 Thermoelectric Materials," J Electron Mater, vol. 46, no. 5, p.3083–3088, May 2017.
DOI: 10.1007/s11664-016-5169-y
Google Scholar
[47]
F. D. Börner et al., "Development of laser-based joining technology for the fabrication of ceramic thermoelectric modules," J Mater Res, vol. 29, no. 16, p.1771–1780, Aug. 2014.
DOI: 10.1557/jmr.2014.216
Google Scholar
[48]
A. T. Baheta, K. K. Looi, A. N. Oumer, and K. Habib, "Thermoelectric Air-Conditioning System: Building Applications and Enhancement Techniques," International Journal of Air-Conditioning and Refrigeration, vol. 27, no. 2, Jun. 2019.
DOI: 10.1142/S2010132519300027
Google Scholar
[49]
J. Bierschenk and D. Johnson, "Extending the limits of air cooling with thermoelectrically enhanced heat sinks," The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543), vol. 1, pp.679-684 Vol.1, 2004.
DOI: 10.1109/itherm.2004.1319241
Google Scholar
[50]
J. Bierschenk and M. D. Gilley, "Assessment of TEC Thermal and Reliability Requirements for Thermoelectrically Enhanced Heat Sinks for CPU Cooling Applications," 2006 25th International Conference on Thermoelectrics, p.254–259, 2006.
DOI: 10.1109/ict.2006.331363
Google Scholar
[51]
R. Singh, J. Christofferson, Z. Bian, J. Nurnus, A. Schubert, and A. Shakouri, "Characterization of Thin-film Thermoelectric Micro-modules using Transient Harman ZT Measurement and Near IR Thermoreflectance," 2008.
DOI: 10.1557/proc-1044-u10-01
Google Scholar
[52]
X. Ma, H. Zhao, X. Zhao, G. Li, and S. Shittu, "Building integrated thermoelectric air conditioners—A potentially fully environmentally friendly solution in building services," Future Cities and Environment, vol. 5, no. 1, 2019.
DOI: 10.5334/fce.76
Google Scholar
[53]
R. Xiao et al., "In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution," Appl Catal B, vol. 268, p.118382, 2020.
DOI: 10.1016/j.apcatb.2019.118382
Google Scholar
[54]
Y. Xiao, Y. Ding, H. Cheng, and Z. Lu, "The potential application of 2D Ti2CT2 (T = C, O and S) monolayer MXenes as anodes for Na-ion batteries: A theoretical study," Comput Mater Sci, vol. 163, p.267–277, 2019.
DOI: 10.1016/j.commatsci.2019.03.039
Google Scholar
[55]
A. A. Minea and G. Lorenzini, "A numerical study on ZnO based nanofluids behavior on natural convection," Int J Heat Mass Transf, vol. 114, p.286–296, 2017.
DOI: 10.1016/j.ijheatmasstransfer.2017.06.069
Google Scholar
[56]
S. Sreekumar, N. Shah, J. D. Mondol, N. Hewitt, and S. Chakrabarti, "Numerical investigation and feasibility study on MXene/water nanofluid based photovoltaic/thermal system," Cleaner Energy Systems, vol. 2, p.100010, Jul. 2022.
DOI: 10.1016/j.cles.2022.100010
Google Scholar
[57]
Q. Liu et al., "Highly efficient thermoelectric air conditioner with kilowatt capacity realized by ground source heat-exchanging system," iScience, vol. 25, no. 5, May 2022.
DOI: 10.1016/j.isci.2022.104296
Google Scholar
[58]
M. M. Aboelmaaref et al., "Design and performance analysis of a thermoelectric air-conditioning system driven by solar photovoltaic panels," Proc Inst Mech Eng C J Mech Eng Sci, vol. 235, no. 20, p.5146–5159, Oct. 2021.
DOI: 10.1177/0954406220976164
Google Scholar