Drying Kinetics of Irish Potato Slices Dried in an Arduino-Controlled Convective Heat Dryer

Article Preview

Abstract:

This study investigates the drying kinetics of Irish potato slices using an Arduino controlled convective heat dryer. The experiment examines drying temperatures of 60, 65, 70, and 75°C, coupled with potato slice thicknesses of 3 and 5 mm. The drying process is crucial in preserving food products and extending their shelf life. Understanding the drying kinetics of potato slices under different conditions is essential for optimizing the drying process and maintaining product quality. The experimental setup allows for precise control of drying parameters, facilitating accurate data collection. The research aims to analyze the drying characteristics, including drying rate, moisture content, and drying time, at various temperature and thickness combinations. From the mathematical models obtained, it is evident that correlation coefficients closest to unity is at 70°C for chip thickness of 3 mm whereas the correlation coefficients closest to unity is at 60°C for chip thickness of 5 mm. Also, it is clearly observed that the efficiency of the system is highest with chip thickness of 3 mm dried at 70°C and performance evaluation results indicate that dryer efficiency is contingent on both temperature and thickness of the chips. These findings contribute to enhancing the efficiency and effectiveness of convective heat drying methods for potato slices, offering insights into temperature and thickness effects on the drying process. This study provides valuable information for food processing industries seeking to improve drying techniques for potato products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-26

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Y. Saavedra, L. Montes, D. Franco, and R. Moreira, "Food Bioscience Drying kinetics modeling of hot air drying of emulsion templated oleogels employing hydroxypropyl methylcellulose as structuring agent," Food Biosci., vol. 59, no. March, p.103912, 2024.

DOI: 10.1016/j.fbio.2024.103912

Google Scholar

[2] D. K. Ozhathil, M. W. Tay, S. E. Wolf, and L. K. Branski, "A narrative review of the history of skin grafting in burn care," Med., vol. 57, no. 4, 2021.

DOI: 10.3390/medicina57040380

Google Scholar

[3] A. Mousakhani-Ganjeh et al., "Electro-based technologies in food drying - A comprehensive review," Lwt, vol. 145, no. December 2020, p.111315, 2021.

DOI: 10.1016/j.lwt.2021.111315

Google Scholar

[4] S. K. R. Challa, N. N. Misra, and A. Martynenko, "Drying of cannabis—state of the practices and future needs," Dry. Technol., vol. 39, no. 14, p.2055–2064, 2021.

DOI: 10.1080/07373937.2020.1752230

Google Scholar

[5] G. Assegehegn, E. Brito-de la Fuente, J. M. Franco, and C. Gallegos, "Understanding and optimization of the secondary drying step of a freeze-drying process: a case study," Dry. Technol., vol. 39, no. 8, p.1003–1017, 2021.

DOI: 10.1080/07373937.2020.1739065

Google Scholar

[6] T. Tadesse, A. Shemsedin, and T. Sissay, "Heliyon Oyster mushroom drying in tray dryer : Parameter optimization using response surface methodology , drying kinetics , and characterization," Heliyon, vol. 10, no. 2, p. e24623, 2024.

DOI: 10.1016/j.heliyon.2024.e24623

Google Scholar

[7] J. Nudar, M. Roy, and S. Ahmed, "Heliyon Combined osmotic pretreatment and hot air drying : Evaluation of drying kinetics and quality parameters of adajamir ( Citrus assamensis )," Heliyon, vol. 9, no. 9, p. e19545, 2023.

DOI: 10.1016/j.heliyon.2023.e19545

Google Scholar

[8] Y. Ye, T. Zhou, T. Liu, and W. Shi, "Quality-based selection of the optimal hot air gradient drying method for anchovy and modeling of drying kinetics," Aquac. Fish., no. February, 2024.

DOI: 10.1016/j.aaf.2024.03.002

Google Scholar

[9] E. Kontaxakis, I. Fysarakis, F. Mavromatakis, and D. Lydakis, "Enhanced Grape Drying Using Indirect Solar Dryers : Improved Quality and," J. Food Prot., p.100342, 2024.

DOI: 10.1016/j.jfp.2024.100342

Google Scholar

[10] L. Borges-machado et al., "˜ o pepper seeds Drying kinetics and water adsorption properties of jalape n ( Capsicum annuum L .): A study aiming at their recovery and integral exploitation," vol. 204, no. July, 2024.

DOI: 10.1016/j.lwt.2024.116452

Google Scholar

[11] T. T. Nadew, T. S. Tedla, Y. D. Bizuayehu, S. N. Abate, and L. T. Teklehaymanot, "Data on drying kinetics, moisture sorption isotherm, composition study of Ethiopian oyster mushroom (Pleurotus ostreatus mushroom) drying in tray dryer," Data Br., p.110861, 2024.

DOI: 10.1016/j.dib.2024.110861

Google Scholar

[12] J. K. Korese and M. A. Achaglinkame, "Heliyon Convective drying of Gardenia erubescens fruits : Effect of pretreatment , slice thickness and drying air temperature on drying kinetics and product quality," Heliyon, vol. 10, no. 4, p. e25968, 2024.

DOI: 10.1016/j.heliyon.2024.e25968

Google Scholar

[13] M. Tayyab, K. Liu, D. Wei, M. Ahmed, Q. Li, and F. Sarpong, "Ultrasonics Sonochemistry Drying kinetics and quality dynamics of ultrasound-assisted dried selenium-enriched germinated black rice," Ultrason. Sonochem., vol. 98, no. May, p.106468, 2023.

DOI: 10.1016/j.ultsonch.2023.106468

Google Scholar

[14] J. O. Ojediran et al., "Heliyon Drying characteristics of yam slices ( Dioscorea rotundata ) in a convective hot air dryer : application of ANFIS in the prediction of drying kinetics," Heliyon, vol. 6, no. 3, p. e03555, 2020.

DOI: 10.1016/j.heliyon.2020.e03555

Google Scholar

[15] F. H. C. Vera, A. N. Soriano, and N. P. Dugos, "A Comprehensive Review on the Drying Kinetics of Common Tubers," p.1–10, 2021.

DOI: 10.14416/j.asep.2021.03.003

Google Scholar

[16] A. Aacharya, C. Rissler, B. Baral, T. Lhendup, M. Andersson, and H. Davidsson, "Development of a novel solar dryer with an incorporated heat exchanger," Sol. Energy, vol. 269, no. September 2023, p.112327, 2024.

DOI: 10.1016/j.solener.2024.112327

Google Scholar

[17] M. Salhi et al., "Experimental and numerical investigation of the incorporation of an air temperature controller for indirect solar dryers," Energy Convers. Manag. X, vol. 23, no. July, p.100658, 2024.

DOI: 10.1016/j.ecmx.2024.100658

Google Scholar

[18] S. Yematawu, B. Tamrat, D. Tarekegn, and H. Mulugeta, "Experimental testing on the performance of solar dryer equipped with evacuated tube collector, rock bed heat storage and reflectors," Energy Reports, vol. 12, no. June, p.453–471, 2024.

DOI: 10.1016/j.egyr.2024.06.027

Google Scholar

[19] J. Bai, W. Wei, L. Chen, and S. Mei, "Rolling-horizon dispatch of advanced adiabatic compressed air energy storage based energy hub via data-driven stochastic dynamic programming," Energy Convers. Manag., vol. 243, no. May, p.114322, 2021.

DOI: 10.1016/j.enconman.2021.114322

Google Scholar

[20] V. G. Nguyen et al., "Development of advanced machine learning for prognostic analysis of drying parameters for banana slices using indirect solar dryer," Case Stud. Therm. Eng., vol. 60, no. June, p.104743, 2024.

DOI: 10.1016/j.csite.2024.104743

Google Scholar

[21] M. Zeeshan et al., "Novel design and performance evaluation of an indirectly forced convection desiccant integrated solar dryer for drying tomatoes in Pakistan," Heliyon, vol. 10, no. 8, p. e29284, 2024.

DOI: 10.1016/j.heliyon.2024.e29284

Google Scholar

[22] S. A. Mohammed, W. H. Alawee, M. T. Chaichan, A. S. Abdul-Zahra, M. A. Fayad, and T. M. Aljuwaya, "Optimized solar food dryer with varied air heater designs," Case Stud. Therm. Eng., vol. 53, no. October 2023, p.103961, 2024.

DOI: 10.1016/j.csite.2023.103961

Google Scholar

[23] C. Suvanjumrat, I. Chuckpaiwong, W. Chookaew, and J. Priyadumkol, "Assessment of the pineapple drying with a forced convection solar-electrohydrodynamic dryer," Case Stud. Therm. Eng., vol. 59, no. April, p.104582, 2024.

DOI: 10.1016/j.csite.2024.104582

Google Scholar

[24] I. Golpour, R. P. F. Guiné, S. Poncet, H. Golpour, R. Amiri Chayjan, and J. Amiri Parian, "Evaluating the heat and mass transfer effective coefficients during the convective drying process of paddy (Oryza sativa L.)," J. Food Process Eng., vol. 44, no. 9, p.1–14, 2021.

DOI: 10.1111/jfpe.13771

Google Scholar

[25] F. E. Gunawan et al., "Design and energy assessment of a new hybrid solar drying dome - Enabling Low-Cost, Independent and Smart Solar Dryer for Indonesia Agriculture 4.0," IOP Conf. Ser. Earth Environ. Sci., vol. 998, no. 1, p.0–11, 2022.

DOI: 10.1088/1755-1315/998/1/012052

Google Scholar

[26] L. Fernandes and P. B. Tavares, "A Review on Solar Drying Devices: Heat Transfer, Air Movement and Type of Chambers," Solar, vol. 4, no. 1, p.15–42, 2024.

DOI: 10.3390/solar4010002

Google Scholar

[27] C. V Ikwuagwu et al., "Development of an Arduino-Controlled Convective Heat Dryer," UNN Int. Conf. Technol. Innov. Holist. Sustain. Dev., p.180–195, 2020.

Google Scholar

[28] A. Mawire, M. Ramokali, M. Mothupi, and M. Vanierschot, "An experimental evaluation of drying banana slices using a novel indirect solar dryer under variable conditions," Heliyon, vol. 10, no. 7, p. e28268, 2024.

DOI: 10.1016/j.heliyon.2024.e28268

Google Scholar

[29] C. Prajapati and T. Sheorey, "Exploring the efficacy of natural convection in a cabinet type solar dryer for drying gooseberries : An experimental analysis," J. Agric. Food Res., vol. 14, no. May, p.100684, 2023.

DOI: 10.1016/j.jafr.2023.100684

Google Scholar

[30] G. O. Orido, E. K. Ronoh, P. O. Ajwang, and B. B. Gathitu, "Fluid-thermal characteristics of solar-exhaust gas powered dryer: An experimental validation," Results Eng., vol. 22, no. April, p.102205, 2024.

DOI: 10.1016/j.rineng.2024.102205

Google Scholar

[31] O. Kahraman, A. Malvandi, L. Vargas, and H. Feng, "Drying characteristics and quality attributes of apple slices dried by a non-thermal ultrasonic contact drying method," Ultrason. Sonochem., vol. 73, p.105510, 2021.

DOI: 10.1016/j.ultsonch.2021.105510

Google Scholar

[32] R. Jabeen, T. Aijaz, and K. Gul, "Drying kinetics of potato using a self-designed cabinet dryer Drying kinetics of potato using a self-designed cabinet dryer," Cogent Food Agric., vol. 13, no. 1, 2015.

DOI: 10.1080/23311932.2015.1036485

Google Scholar

[33] N. J. Edeani, K. A. Eze, and M. M. Chukwu, "Thermodynamic Properties and Drying Kinetics of Potato Slices using Hot Air Drying," vol. 10, no. 1, p.3224–3236, 2023.

DOI: 10.29294/ijase.10.1.2023.3224-3236

Google Scholar

[34] F. Ökologische Agrarwissenschaften Fachgebiet Agrartechnik sc agr Oliver Hensel, von Rosalizan Binti Md Saleh aus Selangor, and M. Witzenhausen, "Investigation of potential drying strategies for quality maintenance of carrot Dissertation zur Erlangung des akademischen Grades Doktorin der Agrarwissenschaften (Dr. agr.)," no. May, 2021.

Google Scholar

[35] A. Bhanudas, V. P. Chandramohan, V. R. K. Raju, and V. Meda, "A review on indirect type solar dryers for agricultural crops – Dryer setup , its performance , energy storage and important highlights," Appl. Energy, vol. 258, no. May 2019, p.114005, 2020.

DOI: 10.1016/j.apenergy.2019.114005

Google Scholar

[36] O. A. Babar, A. Tarafdar, S. Malakar, V. K. Arora, and P. K. Nema, "Design and performance evaluation of a passive flat plate collector solar dryer for agricultural products," J. Food Process Eng., vol. 43, no. 10, 2020.

DOI: 10.1111/jfpe.13484

Google Scholar

[37] S. Gasa, S. Sibanda, T. S. Workneh, M. Laing, and A. Kassim, "Heliyon Thin-layer modelling of sweet potato slices drying under naturally-ventilated warm air by solar-venturi dryer," Heliyon, vol. 8, no. February, p. e08949, 2022.

DOI: 10.1016/j.heliyon.2022.e08949

Google Scholar