An Inverse Heat Transfer Based Technique for Estimating Thermal Contact Conductance and its Validation with Experiments

Article Preview

Abstract:

The accurate estimation of thermal contact conductance (TCC) at material contact interfaces is cru cial for determining the temperature distribution in a system, particularly in vacuum conditions such as outer space. Improper estimates of TCC, especially in vacuum environments, may result in under design of thermal management systems resulting in the formation of hot spots, leading to material and system failure. This study introduces two inverse techniques for determining the TCC at the contact interface. The validity of the proposed inverse methods is established by comparing TCC values at the interface with those obtained from experiments performed using the ASTM D5470-17 standard, which is applicable under the assumption of one-dimensional heat transfer. Experiments are meticu lously conducted to ensure the validity of the one-dimensional heat transfer assumption. The variation observed in the TCC estimates obtained from experiments and the inverse methodology is discussed to establish the validity of the proposed inverse techniques. Consequently, these techniques offer ap plicability in scenarios where one-dimensional heat transfer is compromised due to factors such as asperity distribution, vacuum conditions, or low thermal conductivity of the specimen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-37

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zou, Y. Feng, X. Zhang, T. Ohara, L. Qiu, Enhancing mechanism of cnt-cnt interface by metal nanoparticle and nanowire effect on the inside and outside of cnt, International Journal of Thermal Sciences 185 (2023) 108094.

DOI: 10.1016/j.ijthermalsci.2022.108094

Google Scholar

[2] D. Toebben, A. Goerner, P. Luczynski, M. Wirsum, W. F. Mohr, K. Helbig, Investigation and thermal modeling of the thermal contact resistance at a steam turbine blade root, in: Turbo Expo: Power for Land, Sea, and Air, Vol. 58646, American Society of Mechanical Engineers, 2019, p. V05AT13A003.

DOI: 10.1115/gt2019-90769

Google Scholar

[3] C. Courbon, T. Mabrouki, J. Rech, D. Mazuyer, E. D'Eramo, On the existence of a thermal contact resistance at the tool-chip interface in dry cutting of aisi 1045: Formation mechanisms and influence on the cutting process, Applied Thermal Engineering 50 (1) (2013) 1311–1325.

DOI: 10.1016/j.applthermaleng.2012.06.047

Google Scholar

[4] E. Artyukhin, A. Nenarokomov, A. Tryanin, S. Utenkov, V. Yakovlev, Identification of contact thermal resistances in nuclear reactor fuel elements. 1. algorithm development, Journal of engineering physics 60 (3) (1991) 380–388.

DOI: 10.1007/bf00870882

Google Scholar

[5] R. R. Kumar, R. Palininathan, E. Kishor, G. S. Kumar, B. Deependran, Role of thermal contact conductance on sandwich-type metallic thermal protection system profile, AIAA journal 50 (10) (2012) 2194–2201.

DOI: 10.2514/1.j051544

Google Scholar

[6] H. L. Zhao, D. X. Li, Y. M. Huang, F. Gao, J. Yu, B. Wang, D. H. Mu, Experimental research on influence factors of thermal contact resistance between joints, Applied Mechanics and Materials 52 (2011) 1560–1564.

DOI: 10.4028/www.scientific.net/amm.52-54.1560

Google Scholar

[7] S. R. Narayana, P. K. Narayan, Effect of load and interface materials on thermal contact resistance between similar and dissimilar materials, Applied Mechanics and Materials 592 (2014) 1493– 1497.

DOI: 10.4028/www.scientific.net/amm.592-594.1493

Google Scholar

[8] M. M. Yovanovich, Four decades of research on thermal contact, gap, and joint resistance in microelectronics, IEEE Transactions on Components and Packaging Technologies 28 (2) (2005) 182–206.

DOI: 10.1109/tcapt.2005.848483

Google Scholar

[9] A. S. for Testing, Materials, Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials, ASTM International, 2017.

DOI: 10.1520/d5470

Google Scholar

[10] C. Madhusudana, Accuracy in thermal contact conductance experiments-the effect of heat losses to the surroundings, International communications in heat and mass transfer 27 (6) (2000) 877– 891.

DOI: 10.1016/s0735-1933(00)00168-8

Google Scholar

[11] E. Ajul, E. Kishor, S. Chanda, Prediction of thermal contact conductance in conforming rough metal contacts through regeneration of surface profile, in: Proceedings of the 26thNational and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference December 17-20, 2021, IIT Madras, Chennai-600036, Tamil Nadu, India, Begel House Inc., 2021.

DOI: 10.1615/ihmtc-2021.2620

Google Scholar

[12] M. K. Thompson, Methods for generating rough surfaces in ANSYS, in: Proceedings of the 2006 International ANSYS Users Conference & Exhibition, Pittsburgh, PA, Citeseer, 2006.

Google Scholar

[13] C. Ma, L. Zhao, H. Shi, X. Mei, J. Yang, A geometrical mechanical thermal predictive model for thermal contact conductance in vacuum environment, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230 (8) (2016) 1451–1464.

DOI: 10.1177/0954405415611358

Google Scholar

[14] M. V. Murashov, S. D. Panin, Modeling of thermal contact conductance, in: International Heat Transfer Conference, Vol. 49415, 2010, p.387–392.

DOI: 10.1115/ihtc14-22616

Google Scholar

[15] P. Siddappa, A. Tariq, Contact area and thermal conductance estimation based on the actual surface roughness measurement, Tribology International 148 (2020) 106358.

DOI: 10.1016/j.triboint.2020.106358

Google Scholar

[16] J.-J. Gou, X.-J. Ren, Y.-J. Dai, S. Li, W.-Q. Tao, Study of thermal contact resistance of rough surfaces based on the practical topography, Computers & Fluids 164 (2018) 2–11.

DOI: 10.1016/j.compfluid.2016.09.018

Google Scholar

[17] C. H. Huang, M. Ozisik, B. Sawaf, Conjugate gradient method for determining unknown contact conductance during metal casting, International Journal of Heat and Mass Transfer 35 (7) (1992) 1779–1786.

DOI: 10.1016/0017-9310(92)90148-l

Google Scholar

[18] S. Chanda, C. Balaji, P. Venkateshan, S, G. R. Yenni, Estimation of principal thermal conductivities of layered honeycomb composites using ann–ga based inverse technique, International Journal of Thermal Sciences 111 (2017) 423–436.

DOI: 10.1016/j.ijthermalsci.2016.09.011

Google Scholar

[19] G. R. Yenni, S. M. Basha, H. K. Thota, V. Jasvanth, An inverse estimation of thermal contact conductance of aero-space structural adhesive interface between diffuser plate and honeycomb sandwich panel, in: Proceedings of the 26thNational and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference December 17-20, 2021, IIT Madras, Chennai-600036, Tamil Nadu, India, Begel House Inc., 2021.

DOI: 10.1615/ihmtc-2021.3400

Google Scholar

[20] S. Fathi, M. Eftekhari Yazdi, A. Adamian, Estimation of contact heat transfer between curvilinear contacts using inverse method and group method of data handling (gmdh)-type neural networks, Heat and Mass Transfer 56 (6) (2020) 1961–1970.

DOI: 10.1007/s00231-020-02832-x

Google Scholar

[21] M. Asif, A. Tariq, K. M. Singh, Estimation of thermal contact conductance using transient approach with inverse heat conduction problem, Heat and Mass Transfer 55 (11) (2019) 3243–3264.

DOI: 10.1007/s00231-019-02617-x

Google Scholar

[22] E. Ajul, S. Chanda, Estimation of thermal contact conductance of spacecraft heat sink bolted joints, Applied Thermal Engineering 224 (2023) 120078.

DOI: 10.1016/j.applthermaleng.2023.120078

Google Scholar

[23] E. Kishor, E. Ajul, S. Chanda, S. L. Das, Estimation of spatially varying thermal contact conductance of non-conformal bolted joint, Heat and Mass Transfer (2023) 1–18.

DOI: 10.1007/s00231-023-03436-x

Google Scholar

[24] S. Sunil Kumar, K. Ramamurthi, Influence of flatness and waviness of rough surfaces on surface contact conductance, Journal of Heat Transfer 125 (3) (2003) 394–402.

DOI: 10.1115/1.1565093

Google Scholar

[25] Comsol optimization module guide, https://doc.comsol.com/5.4/doc/com.comsol. help.opt/OptimizationModuleUsersGuide.pdf (Aug. 2022).

Google Scholar

[26] A. Tariq, M. Asif, Experimental investigation of thermal contact conductance for nominally flat metallic contact, Heat and Mass Transfer 52 (2) (2016) 291–307.

DOI: 10.1007/s00231-015-1551-1

Google Scholar