[1]
Huang, S., Li, S., Wang, X., Mao, D.: Micro-perforated absorbers with incompletely partitioned cavities. Appl. Acoust. 126, 114–119 (2017).
DOI: 10.1016/j.apacoust.2017.05.016
Google Scholar
[2]
Berglund, B., Hassmén, P., Job, R.F.S.: Sources and effects of low‐frequency noise. J. Acoust. Soc. Am. 99, 2985–3002 (1996).
DOI: 10.1121/1.414863
Google Scholar
[3]
Wu, M.Q.: Micro perforated Panels for Duct Silencing. Noise Control Eng. J. 45, 69–77 (1997).
DOI: 10.3397/1.2828428
Google Scholar
[4]
Maa, D.-Y.: Theory and design of micro perforated-panel sound-absorbing construction. Sci. Sin. 18, 55–71 (1975). https://doi.org/.
Google Scholar
[5]
Maa, D.Y.: Microperforated panel wideband absorbers. Noise Control Eng. J. 29, 77–84 (1987).
DOI: 10.3397/1.2827694
Google Scholar
[6]
Maa, D.-Y.: Potential of microperforated panel absorber. J. Acoust. Soc. Am. 104, 2861–2866 (1998).
DOI: 10.1121/1.423870
Google Scholar
[7]
Agarwalla, D.K., Mohanty, A.R.: Broadband Sound Absorption Technique Using Micro-perforated Panel Absorber with Perforated Extended Panel. J. Vib. Eng. Technol. (2023).
DOI: 10.1007/s42417-023-00855-2
Google Scholar
[8]
Toyoda, M., Mu, R.L., Takahashi, D.: Relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible microperforated-panel absorbers. Appl. Acoust. 71, 315–320 (2010).
DOI: 10.1016/j.apacoust.2009.10.007
Google Scholar
[9]
Yang, C., Xu, H.: Effects of the backing cavity on the acoustic absorption of a microperforated panel absorber. Appl. Acoust. 166, (2020).
DOI: 10.1016/j.apacoust.2020.107361
Google Scholar
[10]
Wang, C., Cheng, L., Pan, J., Yu, G.: Sound absorption of a micro-perforated panel backed by an irregular-shaped cavity. J. Acoust. Soc. Am. 127, 238–246 (2010).
DOI: 10.1121/1.3257590
Google Scholar
[11]
Mosa, A.I., Putra, A., Ramlan, R., Prasetiyo, I., Esraa, A.A.: Theoretical model of absorption coefficient of an inhomogeneous MPP absorber with multi-cavity depths. Appl. Acoust. 146, 409–419 (2019).
DOI: 10.1016/j.apacoust.2018.11.002
Google Scholar
[12]
Prasetiyo, I., Sarwono, J., Sihar, I.: Study on inhomogeneous perforation thick micro-perforated panel sound absorbers. J. Mech. Eng. Sci. 10, 2350–2362 (2016).
DOI: 10.15282/jmes.10.3.2016.12.0218
Google Scholar
[13]
Bucciarelli, F., Malfense Fierro, G.P., Meo, M.: A multilayer microperforated panel prototype for broadband sound absorption at low frequencies. Appl. Acoust. 146, 134–144 (2019).
DOI: 10.1016/j.apacoust.2018.11.014
Google Scholar
[14]
Mosa, A.I., Putra, A., Ramlan, R., Esraa, A.A.: Wideband sound absorption of a double-layer microperforated panel with inhomogeneous perforation. Appl. Acoust. 161, (2020).
DOI: 10.1016/j.apacoust.2019.107167
Google Scholar
[15]
Agarwalla, D.K., Mohanty, A.R.: Analysis of Acoustics Performance of Double-Layer Micro-perforated Panel Absorbers: A Finite Element Analysis. In: Lecture Notes in Mechanical Engineering. p.159–172 (2024).
DOI: 10.1007/978-981-99-5613-5_13
Google Scholar
[16]
Sakagami, K., Matsutani, K., Morimoto, M.: Sound absorption of a double-leaf micro-perforated panel with an air-back cavity and a rigid-back wall: Detailed analysis with a Helmholtz-Kirchhoff integral formulation. Appl. Acoust. 71, 411–417 (2010).
DOI: 10.1016/j.apacoust.2009.11.014
Google Scholar
[17]
Liu, Z., Zhan, J., Fard, M., Davy, J.L.: Acoustic measurement of a 3D printed micro-perforated panel combined with a porous material. Meas. J. Int. Meas. Confed. 104, 233–236 (2017).
DOI: 10.1016/j.measurement.2017.03.032
Google Scholar
[18]
Liu, Z., Zhan, J., Fard, M., Davy, J.L.: Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel. Appl. Acoust. 121, 25–32 (2017).
DOI: 10.1016/j.apacoust.2017.01.032
Google Scholar
[19]
Agarwalla, D.K., Mohanty, A.R.: Low-Frequency Wideband Sound Absorption Properties of Composite Layer Micro-perforated Panel Absorber. J. Vib. Eng. Technol. (2024).
DOI: 10.1007/s42417-023-01250-7
Google Scholar
[20]
Agarwalla, D.K., Mohanty, A.R.: Improving Wideband Sound Absorption of Single Layer Micro-perforated Panel Absorber: A Finite Element and Experimental Approach. Mech. Mach. Sci. 153, 467–477 (2024).
DOI: 10.1007/978-981-99-8986-7_31
Google Scholar
[21]
Zhao, X., Fan, X.: Enhancing low frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plates. Appl. Acoust. 88, 123–128 (2015).
DOI: 10.1016/j.apacoust.2014.08.015
Google Scholar
[22]
Gai, X.L., Xing, T., Li, X.H., Zhang, B., Cai, Z.N., Wang, F.: Sound absorption properties of microperforated panel with membrane cell and mass blocks composite structure. Appl. Acoust. 137, 98–107 (2018).
DOI: 10.1016/j.apacoust.2018.03.013
Google Scholar
[23]
Mukae, S., Okuzono, T., Tamaru, K., Sakagami, K.: Modeling microperforated panels and permeable membranes for a room acoustic solver with plane-wave enriched FEM. Appl. Acoust. 185, (2022).
DOI: 10.1016/j.apacoust.2021.108383
Google Scholar
[24]
Zhao, X.D., Yu, Y.J., Wu, Y.J.: Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators. Appl. Acoust. 114, 92–98 (2016).
DOI: 10.1016/j.apacoust.2016.07.013
Google Scholar
[25]
Qian, Y.J., Kong, D.Y., Liu, S.M., Sun, S.M., Zhao, Z.: Investigation on micro-perforated panel absorber with ultra-micro perforations. Appl. Acoust. 74, 931–935 (2013).
DOI: 10.1016/j.apacoust.2013.01.009
Google Scholar
[26]
Rui Liu, C., Hui Wu, J., Yang, Z., Ma, F.: Ultra-broadband acoustic absorption of a thin microperforated panel metamaterial with multi-order resonance. Compos. Struct. 246, (2020).
DOI: 10.1016/j.compstruct.2020.112366
Google Scholar
[27]
Taban, E., Soltani, P., Berardi, U., Putra, A., Mousavi, S.M., Faridan, M., Samaei, S.E., Khavanin, A.: Measurement, modeling, and optimization of sound absorption performance of Kenaf fibers for building applications. Build. Environ. 180, 107087 (2020).
DOI: 10.1016/j.buildenv.2020.107087
Google Scholar
[28]
ASTM C423-90a: Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method1. West Conshohocken, PA: American Society for Testing and Materials International; (1990).
DOI: 10.1520/c0423-08
Google Scholar
[29]
ANSI: ASTM E 1050 : Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system. Am. Soc. Test. Mater. 1–12 (1998).
DOI: 10.1520/e1050-08
Google Scholar
[30]
Sakagami, K., Kusaka, M., Okuzono, T., Nakanishi, S.: The Effect of Deviation Due to the Manufacturing Accuracy in the Parameters of an MPP on Its Acoustic Properties: Trial Production of MPPs of Different Hole Shapes Using 3D Printing. Acoustics. 2, 605–616 (2020).
DOI: 10.3390/acoustics2030032
Google Scholar