3D-Laser Processing of Spatially Curved Profiles

Article Preview

Abstract:

Due to economical, ecological and functional reasons, lightweight-construction is continuously gaining importance. Therefore, lightweight space frames made of pipe profiles are subsequently of higher importance in today’s technology. Today, the lower limits of the production range of lightweight space frames are set by joining processes that require jigs. For a flexible variation in a small-scale production, the use of latching elements for the pre-attachment in the jigfree assembly of frame structures serves as a good approach. In consideration of the analysis of the actual situation this article takes up this approach and points out the potential enabled by latching elements. Subsequently, the implementation of laser cutting will be motivated and the results of the first experiments on reinforced and unreinforced profiles will be discussed. To conclude this article, the challenges and approaches for the integration of this procedure to an existing handling and machining kinematics will be pointed out, and finally the implementation potentials of the procedure within an entire process-chain will also be mentioned.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-52

Citation:

Online since:

February 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kleiner, M.: Leichtbaustrategien; in: Karlsruher Arbeitsgespräche 2002, Forschung für die Produktion von morgen, pp.177-178, (2002).

Google Scholar

[2] Bleck, W.; Blümel, K.; Prange, W.: Leichtbau mit intelligenten Stahllösungen. KonferenzEinzelbericht; VDI-Berichte, Band 1080 Düsseldorf; in: VDI (1994), pp.25-34.

Google Scholar

[3] Haferkamp, H.; Ostendorf, A.; Bunte, J.; Engelbrecht, L.: Modern Laser Beam Brazing of Thin Sheets; in: Joining in Traffic and Transportation Industry, Processes, Progress, Applications; 9. International Aachen Welding Conference (2004).

Google Scholar

[4] Vollertsen, F.; Sepold, G.; Seefeld, T.; Kreimeyer, M.; Wagner, F.: New Laser Joining Processes for Aluminium-Steel Joints; in: Joining in Traffic and Transportation Industry, Processes, Progress, Applications; 9. International Aachen Welding Conference (2004).

DOI: 10.2351/1.5060368

Google Scholar

[5] Brucker, J.; Himmelbauer, K.; Schmaranzer, C.: Application Possibilities of the CMT - Process, with Particular Emphasis on the Joining of Steel with Aluminium; in: Joining in Traffic and Transportation Industry, Processes, Progress, Applications; 9. International Aachen Welding Conference (2004).

Google Scholar

[6] Kleiner, M; Klaus, A.: Flexible Fertigung leichter Tragwerkstrukturen - der neue SFB/TR10, in: Geiger, M.; Ehrenstein, G. W. (Hrsg. ): Robuste, verkürzte Prozessketten für flächige Leichtbauteile. Tagungsband zum Industriekolloquium 2003 des SFB 396. Bamberg: Meisenbach-Verlag (2003).

Google Scholar

[7] Kreimeyer, M.; Wagner, F.; Vollertsen, F.: Properties of Laser Joined Aluminum/Steel Sheets; in: Proceedings of the Second International WLT-Conference on Lasers in Manufacturing 2003, Munich, June (2003).

Google Scholar

[8] Fleischer, J.; Kies, S.; Ruch, D.: Flexible und intelligente Greiftechnik, in: Aluminium, Vol. 80/12, Giesel Verlag GmbH Isernhagen (2004), pp.1421-1424.

Google Scholar

[9] Kristensen, T.; Olsen, F.; Alting, L.: Increasing the potential of laser welding using self fixturing weld parts, in: Laser Assisted Net shape Engineering, Proceeding of the CIRP Seminars, manufacturing systems, Vol. 24 (1995), No. 2, pp.105-109.

Google Scholar

[10] Dietz, C.: Laserstrahl biegt auch komplexe Geomerien, Neue Perspektiven beim berührungslosen Blechteilefertigen; in: Industrieanzeiger, Band 119, Heft 20 (1997), p.48.

Google Scholar

[11] Geiger, M.; Kraus, J.; Vollertsen, F.: Laserstrahlumformen räumlicher Bauteile; in: Bänder Bleche Rohre, Band 35, Heft 11 (1994), pp.26-37.

Google Scholar

[12] Beckmann, M.; Vollertsen, F.: Methoden der lokalen Kurzzeitwärmebehandlung bei 6000er Aluminiumlegierungen; in: Metall, Vol. 7-8 (2002), pp.462-467.

Google Scholar

[13] Vollertsen, F.: Laserstrahlumformen, Lasergestützte Formgebung: Verfahren, Mechanismen, Modellierung; Meisenbach Verlag Bamberg (1996), pp.193-197.

Google Scholar

[14] Poprawe, R.: Lasertechnik für die Fertigung, Grundlagen, Perspektiven und Beispiele für den innovativen Ingenieur, Springer Verlag Berlin, Heidelberg (2005).

Google Scholar

[15] Vollrath, K.: Kilowatt-Leistungen aus dünnen Glasfasern; MM Maschinenmarkt Sonderausgabe 12/2005; pp.28-31.

Google Scholar

[16] Morgenthal, L.: Cutting with Fiber Lasers; 1st International Fraunhofer Workshop on Fiber Lasers; 11/(2005).

Google Scholar

[17] VDI Technologiezentrum - Physikalische Technologien: Schneiden mit CO2-Lasern, Laser in der Materialbearbeitung Band 1; VDI-Verlag (1993).

DOI: 10.1007/978-3-642-95826-7

Google Scholar

[18] TRUMPF Systemtechnik GmbH: Laserschneidanlagen für Rundrohre; 12/2005, p.3.

Google Scholar

[19] Fleischer, J.; Schmidt-Ewig, J. P.: Innovative Machine Kinematics for Combined Handling and Machining of Three-Dimensional Curved Lightweight Extrusion Structures, in: Annals of the CIRP Volume 54/1, pp.317-320, (2005).

DOI: 10.1016/s0007-8506(07)60112-7

Google Scholar

[20] Fleischer, J.; Kies, S.; Munzinger, C.; Troendle, M.; Schmidt-Ewig, J. P.: Berechnung und Optimierung eines neuartigen Werkzeugmaschinenkonzepts zur Bearbeitung dreidimensional gerundeter Profile; in: ZWF 9 (2005).

DOI: 10.3139/104.100933

Google Scholar