Doping with Metal and Compound to Improve the Properties of Hydrogen Storage of MgH2

Article Preview

Abstract:

Recently, Magnesium hydride MgH2 is one of the attractive hydrogen storage materials because it reaches a high hydrogen capacity. However, the reaction kinetics is too slow and needs high temperature for progressing hydrogen absorption and desorption reactions, which hinders the process of practical applications and it is necessary to improve the hydrogen storage propesties. In this paper, most used or under research methods (Doping with metal and compound) of improving on the hydrogen storage of magnesium hydride are reviewed, in particular to elements substitution, addition of transition metal oxides or fluorine and so on. The advantages and disadvantages of vaious methods of improving on the hydrogen storage of magnesium hydride are compared. The trend of the methods of improving is also introduced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

606-609

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhang, Y.C. Zhou, Z.S. Ma, L.Q. Sun, P. Peng. Int. J. Hydrogen Energy, Vol. 38(2013), p.3661.

Google Scholar

[2] C. Zhou, Z.Z. Fang, J. Lu, X. Luo, C. Ren, P. Fan, Y. Ren, X. Zhang. J. Phys. Chem. C, Vol. 118 (2014), p.11526.

Google Scholar

[3] L. Zaluski, A. Zaluska, J.O. Ström-Olsen. J. Alloys Compd., Vol. 217(1995), p.245.

Google Scholar

[4] G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz. J. Alloys Compd., Vol. 292(1999), p.247.

Google Scholar

[5] E. Germán, V. Verdinelli, C.R. Luna, A. Juan, D. Sholl. J. Phys. Chem. C, Vol. 118(2014), p.4231.

Google Scholar

[6] C. An, G. Liu, L. Li, Y. Wang, C. Chen, Y. Wang, L. Jiao, H. Yuan. Nanoscale, Vol. 6(2014), p.3223.

Google Scholar

[7] D.W. Zhou, J.S. Liu, J. Zhang, P. Peng. J. Hunan University (Natural Sciences), Vol. 33(2006), p.85.

Google Scholar

[8] N. Novaković, J. Grbović Novaković, L. Matović, M. Manasijević, I. Radisavljević, B. Paskaš Mamula, N. Ivanović. Int. J. Hydrogen Energy, Vol. 35(2010), p.598.

DOI: 10.1016/j.ijhydene.2009.11.003

Google Scholar

[9] S.A. Shevlin, Z.X. Guo. J. Phys. Chem. C, Vol. 117(2013), p.10883.

Google Scholar

[10] H. Gasan, O.N. Celik, N. Aydinbeyli, Y.M. Yaman. Int. J. Hydrogen Energy, Vol. 37(2012), p. (1912).

Google Scholar

[11] M.Y. Song, S.N. Kwon, H.R. Park, J. -L. Bobet. Int. J. Hydrogen Energy, Vol. 36(2011), p.12932.

Google Scholar

[12] B.S. Amirkhiz, B. Zahiri, P. Kalisvaart, D. Mitlin. Int. J. Hydrogen Energy, Vol. 36(2011), p.6711.

Google Scholar

[13] W.P. Kalisvaart, C.T. Harrower, J. Haagsma, B. Zahiri, E.J. Luber, C. Ophus, E. Poirier, H. Fritzsche, D. Mitlin. Int. J. Hydrogen Energy, Vol. 35(2010), p. (2091).

DOI: 10.1016/j.ijhydene.2009.12.013

Google Scholar

[14] R.R. Shahi, A.P. Tiwari, M.A. Shaz, O.N. Srivastava. Int. J. Hydrogen Energy, Vol. 38(2013), p.2778.

Google Scholar

[15] R.K. Singh, T. Sadhasivam, G.I. Sheeja, P. Singh, O.N. Srivastava. Int. J. Hydrogen Energy, Vol. 38(2013), p.6221.

Google Scholar

[16] T. Ma, S. Isobe, Y. Wang, N. Hashimoto, S. Ohnuki. J. Phys. Chem. C, Vol. 117(2013), p.10302.

Google Scholar

[17] R. Gupta, F. Agresti, S.L. Russo, A. Maddalena, P. Palade, G. Principi. J. Alloys Compd., Vol. 450(2008), p.310.

Google Scholar

[18] Q. Li, K.D. Xu, K.C. Chou, Q. Lin, J.Y. Zhang, X.G. Lu. Intermetallics, Vol. 13(2005), p.1190.

Google Scholar

[19] G. Barkhordarian, T. Klassen, R. Bormann. Scripta Materialia, Vol. 49(2003), p.213.

Google Scholar

[20] G. Barkhordarian, T. Klassen, R. Bormann. J. Alloys Compd., Vol. 364(2004), p.242.

Google Scholar

[21] K.S. Jung, E.Y. Lee, K.S. Lee. J. Alloys Compd., Vol. 421(2006), p.179.

Google Scholar

[22] N. Hanada, T. Ichikawa, H. Fujii. J. Alloys Compd., Vol. 446-447(2007), p.67.

Google Scholar

[23] V.V. Bhat, A. Rougier, L. Aymard, X. Darok, G. Nazri, J.M. Tarascon. J. Power Sources, Vol. 159(2006), p.107.

DOI: 10.1016/j.jpowsour.2006.04.059

Google Scholar

[24] V.V. Bhat, A. Rougier, L. Aymard, G.A. Nazri, J.M. Tarascon. J. Alloys Compd., Vol. 460(2008), p.507.

Google Scholar

[25] C. Zhi, T. Chao, P. Hui, Y. Huabin. Int. J. Hydrogen Energy, Vol. 35(2010), p.8289.

Google Scholar

[26] M.O.T. da Conceição, M.C. Brum, D.S. dos Santos, M.L. Dias. J. Alloys Compd., Vol. 550(2013), p.179.

Google Scholar

[27] M. Porcu, A.K. Petford-Long, J.M. Sykes. J. Alloys Compd., Vol. 453(2008), p.341.

Google Scholar

[28] N. Hanada, E. Hirotoshi, T. Ichikawa, E. Akiba, H. Fujii. J. Alloys Compd., Vol. 450(2008), p.395.

Google Scholar

[29] T.K. Nielsen, T.R. Jensen. Int. J. Hydrogen Energy, Vol. 37(2012), p.13409.

Google Scholar

[30] O. Friedrichs, J.C. Sánchez-López, C. López-Cartes, T. Klassen, R. Bormann, A. Fernández. J. Phys. Chem. B, Vol. 110(2006), p.7845.

DOI: 10.1021/jp0574495

Google Scholar