Adsorption and Diffusion of Aluminum, Gallium and Indium Atoms on Semi-Polar Gallium Nitride Substrate Surface: A First Principle Simulation

Article Preview

Abstract:

The first principles simulations are performed to investigate the adsorption and diffusion of aluminum, gallium and indium atoms on semi-polar gallium nitrides surface, the calculations are performed by using the Car–Parrinello molecular dynamics (CPMD) method. The aluminum ad-atoms adsorption in path 1 and path 3 are much stable than in path 2. The maximum adsorption energy of path1, path2 and path3 are different, which reveal that a different barrier energy pathway between indium ad-atom diffuse along path 1, path2 and path3. Our calculation results reveal that diffusion barriers of aluminum, gallium and indium atoms on semi-polar gallium nitride surface are anisotropy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

598-601

Citation:

Online since:

August 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Taniyasu, Y. Yoshikawa, In-situ monitoring of surface stoichiometry and growth kinetics study of GaN (0001) in MOVPE by spectroscopic ellipsometry, J. Electron. Mater. Vol. 30 (2001) pp.1402-1407.

DOI: 10.1007/s11664-001-0191-z

Google Scholar

[2] M. C. Schmidt, K. C. Kim, R. M. Farrell, et al, Demonstration of nonpolar m-plane InGaN/GaN laser diodes, Jpn. J. Appl. Phys. Vol. 46 (2007) p. L190–L191.

DOI: 10.1143/jjap.46.l190

Google Scholar

[3] K. C. Kim, M. C. Schmidt, H. Sato, F. Wu, Study of Nonpolar m-plane InGaN/GaN multiquantum well light emitting diodes grown by homoepitaxial metal-organic chemical vapor deposition, Appl. Phys. Lett. Vol. 91(2007)p.181120.

DOI: 10.1063/1.2805029

Google Scholar

[4] L. Zhou, R. Chandrasekaran, T. D. Moustakas, D. J. Smith, Structural characterization of non-polar (1120) and semi-polar (1126) GaN films grown on r-plane sapphire, J. Cryst. Growth. Vol. 310 (2008) pp.2981-2986.

DOI: 10.1016/j.jcrysgro.2008.03.013

Google Scholar

[5] B. A. Haskell, S. Nakmura, S. P. Denbaars, et al, Progress in the growth of nonpolar gallium nitride, Phys. Status Solidi B. Vol. 244 (2007) pp.2847-2858.

DOI: 10.1002/pssb.200675625

Google Scholar

[6] D. F. Feezell, M. C. Schmidt, S. P. Denbars, et al, Development of nonpolar and semipolar InGaN/GaN visible light emitting diodes, MRS Bulletin, Vol. 34 (2009)pp.318-323.

DOI: 10.1557/mrs2009.93

Google Scholar

[7] K. G. Chee, J. S. David, First-principles study of In, Ga, and N adsorption on InxGa1−xN (0001) and (000-1) surfaces, Phys. Rev. B. Vol. 77 (2008) p.205324.

Google Scholar

[8] R. Car, M. P. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. Vol. 55 (1985) pp.2471-2474.

DOI: 10.1103/physrevlett.55.2471

Google Scholar

[9] S. Goedecker, M. Teter, J. Hutter, Separable dual-space gaussian pseudopotentials, Phys. Rev. B. Vol. 54 (1996) pp.1703-1710.

DOI: 10.1103/physrevb.54.1703

Google Scholar

[10] C. Bungaro, K. Rapcewicz, J. Bernhole, Ab initio phonon dispersions of wurtzite AlN, GaN, and InN, Phys. Rev. B. Vol. 61 (2000)p.6720.

DOI: 10.1103/physrevb.61.6720

Google Scholar