Site-Directed Mutagenesis of a Neutral Phytase from Bacillus amyloliquefaciens: Influencing Activity and Stability

Article Preview

Abstract:

In order to improve the activity and stability of phytase from Bacillus amyloliquefaciens, site-directed mutagenesis has been performed base on the previous recombinant E.coli BL21 harboring the expression vector of phyC. Mutation residues were chosen based on the sequence alignments and structure analysis of neutral phytsaes from different microorganisms. Site-directed mutagenesis techniques were used to get three mutants (D148E/H149R, Q67E/N68R, and D191E), then the mutants were expressed and purified. Enzymatic characters of different mutants were investigated. The results indicated that the optimum pH of all mutants were 7.0, and the optimum temperature were between 65 °C–70 °C. The maximum specific activity of mutant D148E/H149E was 27.84 U/mg which was 2.19 times than that of the wild-type phytase. The half inactivation temperature of D191E was 4.5 °C higher than that of the wild-type phytase. Fluorescence emission spectra showed that slight differences were among the structures of the mutant phytases. The phytases described here which have increased activity and thermostability may have promosing potential as feed additives in animal diets.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

271-278

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Singh, G. Kunze, T. Satyanarayana. Biotechnol. Mol. Biol. Rev., 6-3 (2011), p.69.

Google Scholar

[2] W. Xu, R. Shao, X. H. Yu, et al. Journal of Yancheng Institute of technology, 23-4 (2010), p.9(In chinese).

Google Scholar

[3] S. J. FU, J. Y. Sun. Chinese feed, 2(2005), p.25 (In Chinese).

Google Scholar

[4] M. Jorquera, O. Mart nez, F. Maruyama, et al. Microbes and Environments, 23-3 (2008), p.182.

Google Scholar

[5] G. O. Martha , R. B. Lilı , C. T. J. Gerardo, et al. Applied and Environmental Microbiology. 76-16 (2010), p.5601.

Google Scholar

[6] D. E. RAO, K. V. RAO, V. D. REDDY, et al. Journal of Applied Microbiology, 105-3 (2008), p.1128.

Google Scholar

[7] W. J. Yuan, L. H. Zhang, C. X. Wang. Journal of Dalian Institute of light industry, 19-4 (2000), p.264 (In Chinese).

Google Scholar

[8] R. Bawane, K. Tantwai, L. P. S Rajput, et al. Advanced Studies in Biology, 3-3 (2011), p.103.

Google Scholar

[9] T. T. Tran, G. Mamo, L. Buxo, et al. J Ind Microbiol Biotechnol, 37(2010), p.279.

Google Scholar

[10] P. Pandee, P. Summpunn, S. Wiyakrutta, et al. Microbiol, 49(2011), p.257.

Google Scholar

[11] S. Shin, N. C. Ha, B. C. Oh, et al. Structure, 9(2001), p.851.

Google Scholar

[12] X. L. Li, H. T. Yang, J. D. Hu, et al. Microbiology China, 37-5 (2010), p.738.

Google Scholar

[13] J. Y. Fan, Y. Q. He. Journal of Yunnan Agricultural University, 21-6(2006), p.715(In Chinese).

Google Scholar

[14] S. J. Fu, J. Y. Sun. China feed, 14(2007), p.26 (In Chinese).

Google Scholar

[15] J. M. Viader-S, G. L. Juan, C. T. J. Gerardo, et al. Applied and Environmental Microbiology, 76-19 (2010): 6423.

Google Scholar

[16] Z. W. Gao, Y. H. Zhang, W. Zhang. China Biotechnology, 30-1 (2010), p.98 (In Chinese).

Google Scholar

[17] A. Shivange, A. Dennig, U. Schwaneberg, et al. Journal of Biotechnology, 170(2014), p.68.

Google Scholar

[18] T. H. Wua, C. C. Chen, Y. S. Cheng. Journal of Biotechnology, 175(2014), p.1.

Google Scholar

[19] W. N. Gu, P. L. Yang, Y. R. Wang, et al. Chinese Journal of biotechnology, 23-2(2007), p.273.

Google Scholar

[20] H. Chen, H. L. Wang, W. S. Yang, et al. Chinese journal of biochemistry and molecular biology, 21-4(2005), p.516.

Google Scholar

[21] B. C. Oh, B. S. Chang, K. H. Park, et al. Biochemistry, 40 (2001), p.9669.

Google Scholar

[22] E. T. Tung, H. W. Ma, C. Cheng, et al. Protein Pept. Lett, 15 (2008), p.297.

Google Scholar

[23] T. T. Tran, G. Mamo, L. Buxo, et al. Enzyme and Microbial Technology, 49(2011), p.177.

Google Scholar

[24] A. Farhat-Khemakhem, B. A. Mamdouh, I. Boukhris, et al. International Journal of Biological Macromolecules, 54(2013), p.9.

Google Scholar

[25] G. W. Lu, W. Xu, R. Shao, et al. Food science, 33-21 (2012), p.153.

Google Scholar

[26] W. Xu, M. Qiu, X. H. Yu, et al. Food science, 32-7(2011), p.202 (In Chinese).

Google Scholar

[27] W. Xu, R. Shao, G. W. Lu. China, Patent 201210108972. 3(2012) (In Chinese).

Google Scholar

[28] GB/T18634-2009(2009) (In Chinese).

Google Scholar

[29] B. Kumwenda, D. Litthauer, et al. Evolutionary Bioinformatics, 9(2013), p.327.

Google Scholar

[30] B. S. Lu, G. L. Wang, P. T. Huang. Acta microbiologia sinca, 38-1 (1998), p.20.

Google Scholar

[31] R. Zhang, P. L. Yang, H. Q. Huang, et al. Appl Microbiol Biotechnol, 92(2011), p.317.

Google Scholar

[32] Y. X. Yin, B. Q. Xiang, L. Tong. Experimental Technology and Management, 27-2 (2010), p.33.

Google Scholar

[33] J. Shim, B. C. Oh. Agricultural and Food Chemistry, 60(2012), p.7532.

Google Scholar

[34] K. Yasukawa, K. Inouye. Biovhimica et Biophysica, 1774(2007), p.1281.

Google Scholar