Optimization of Subcritical 1,1,1,2-Tetrafluoroethane( R134a ) Removal of Cholesterol from Spray-Dried Sthenoteuthis oualaniensis Egg Powder Using Response Surface Methodology

Article Preview

Abstract:

Subcritical 1, 1, 1, 2-tetrafluoroethane (R134a) extraction was applied to remove cholesterol from spray-dried Sthenoteuthis oualaniensis egg powder. Response surface methodology (RSM) was applied to optimize the parameters of subcritical R134a extraction (pressure, temperature, and extraction time) on removal rate of cholesterol. Response surface analysis showed that the data came to a precise fitting to a second-order polynomial model. The quadratic terms of pressure and temperature had high significant negative effects (p<0.001) on removal rate. The optimum parameters of the variables were 8.6 MPa, 55.4 °C, 50 min. Under these conditions, removal rate of cholesterol was predicted to be 101% and experiments gave out the removal rate of 99.16%, which concurred with the model prediction. Furthermore, the removal efficiency of cholesterol by R134a was higher than those achieved by using supercritical carbon dioxide(SC-CO2)and β-cyclodextrin extraction methods.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

717-723

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. K. Peng, R. J. Morin ( Eds. ): Biological Effects of Cholesterol Oxides, CRC Press, Boca Raton, FL, (1992).

Google Scholar

[2] S. Boesinger, W. Luf, E. Brandl: Int. Dairy J. vol. 3 (1993), pp.1-8.

Google Scholar

[3] P. W. Wilson, R. B. D'Agostino, D. Levy, A. M. Belanger, H. Silbershatz, W. D. Kannel: Circulation. vol. 97 (1998), pp.1837-1842.

Google Scholar

[4] R. J. Morin, S. K. Peng, A. Sevanian: J. Clin. Lab. Anal. vol. 5 (1991) , pp.219-225.

Google Scholar

[5] Trotsenko B G, Pinehukov MA: Oceanology, vol. 34(3) (1994), P. 380-387.

Google Scholar

[6] Jiacheng, Zhang and Shilong Wang: Science and Technology of Food Industry (in Chinese), vol. 21(5)(2000), pp.35-37.

Google Scholar

[7] Mingchun Ru, Yongming Bao, Jianguo Song, et al : Journal of Dalian Institute of light Industry ( in Chinese) , vol. 16 (4)(1997), pp.85-87.

Google Scholar

[8] N. Vedaraman, G. Brunner, C. Srinivasa kannan, et al: Journal of Supercritical Fluids, vol. 32( 2004), pp.231-238.

Google Scholar

[9] T. Y. Lin, Y. J. Wang, P. Y. Lai, F. J. Lee and J. T. S. Change: Food Chemistry, vol. 67(1999), pp.89-96.

Google Scholar

[10] Zhanqun Hou, Yuanyuan Zheng, et al: Food and Bioproducts Processing, vol. 88 (2) (2010), pp.298-304.

Google Scholar

[11] Chun-Ting Shen, Shih-Lan Hsu, Chieh-Ming J. Chang: Separation and Purification Tecnology, vol. 60(2008), pp.215-222.

Google Scholar

[12] Rahoma S. Mohamed, Marleny D. A. Saldana, Fredy H. Socantaype: Journal of Supercritical Fluids, vol. 16(2000), pp.225-232.

Google Scholar

[13] S. Corr: J. Fluorine Chem, vol. 118(2002), pp.55-67.

Google Scholar

[14] O. J. Catchpole, K. Proells: J. Ind. Eng. Chem, vol. 40 (3) (2001), pp.965-972.

Google Scholar

[15] P. C. Simoes, O. J. Catchpole: J. Ind. Eng. Chem, vol. 41 (2) (2002), pp.267-276.

Google Scholar

[16] A. N. Mustapa, Z. A. Manan, C.Y. Mohd Azizi, et al: J. Food Eng, vol. 95 (4) (2009), pp.606-616.

Google Scholar

[17] Li Li, Yufeng Liu, Huacheng Tang, et al: Food Science (in Chinese), vol. 28(4) ( 2007), pp.289-291.

Google Scholar

[18] Kasetsart Univ, Bangkok: J. Food Processing and Preservation, vol. 37(2003), pp.353-361.

Google Scholar

[19] B. Manohar, C. Basappa, D.N. Rao, S. Divakar: Springer-verlag, vol. 206(1998), pp.189-192.

Google Scholar