Experimental Investigation of Laser Sintering of Conductive Adhesive for Functional Prototypes Produced by Embedding Stereolithography

Article Preview

Abstract:

Embedding stereolithography (eSLA) is an additive, hybrid process, which provides a flexible production of 3D components and the ability to integrate electrical and optical conductive structures and functional components within parts. However, the embedding of conductive circuits in stereolithography (SLA) parts assumes usage of process technologies, which enables their direct integration of conductive circuits during the layer-wise building process. In this context, a promising method for in-situ generation of conductive circuits is dispensing of conductive adhesive on the current surface of the SLA part and its subsequent sintering. In this paper, the laser sintering (λ = 355 nm) of conductive adhesive mainly consisting of silver nanoparticles is investigated. The work intends to evaluate the curing behavior of the conductive adhesive, the beam-matter-interactions and the thermal damage of the SLA substrate. The investigations revealed a fast and flexible laser sintering process for the generation of conductive circuits with sufficient electrical conductivity and sufficient current capacity load. In this context, a characterization of the conductive structures is done by measuring their electrical resistance and their potential current capacity load.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-81

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Runge: Electronics inside Transmission - Chances and signes of Mechatronic Control moduls, Deutsches IMAPS Seminar, Göppingen, (2000).

Google Scholar

[2] K. Ayers and F. J. Hilbrandt, The usage of Stereolithographic Parts as the Final Product, in: 3D Systems North American Sterolithography User Group Meeting, San Antonio, Texas, USA, (1998).

Google Scholar

[3] Information on http: /www. dsm. com/en_US/downloads/dsms/nanotool_gr2. pdf.

Google Scholar

[4] P. Amend, B. Niese and M. Schmidt, Erzeugung funktionaler Schaltungsträger aus Hochtemperaturharz durch Kombination von Additiver Fertigung und ADDIMID-Technologie, in Tagungsband: LEF 2013, Meisenbach, Bamberg, (2013).

Google Scholar

[5] Information on http: /www. panacol. de/fileadmin/panacol/_pdf/pdf_smartcard/el3043. pdf.

Google Scholar

[6] K. Maekawa et al.: Influence of Wavelength on Laser Sintering the Ink-jet Printed Conductive Microstructures Containing Nano-sized Silver Particles, San Diego, USA, (2009).

Google Scholar

[7] K. Maekawa, K. Yamasaki, T. Niizeki, M. Mita, Y. Matsuba, N. Terada and H. Saito, Laser Sintering of Silver Nanoparticles for electronic Use, in: Materials Science Forum Vols. 638-642, Trans Tech Publications, Switzerland, 2010, p.2085-(2090).

DOI: 10.4028/www.scientific.net/msf.638-642.2085

Google Scholar

[8] J. Hörber, K. Schütz, P. Amend, M. Schmidt and J. Franke, Selektives Laser- und Lichtsintern von Aerosol-Jet gedruckten Nano-Silbertinten für thermoplastische Schaltungsträger, in Tagungsband: LEF 2013, Meisenbach, Bamberg, (2013).

Google Scholar

[9] J. Franke, Räumliche elektronische Baugruppen (3D-MID), Carl Hanser, München, (2013).

DOI: 10.3139/9783446437784.fm

Google Scholar

[10] F. R. E. Baugruppen, "Stromtragfähigkeit von MID, in: Fachkonferenzsitzung am 07. 12. 2005, Neue Materialien, Fürth GmbH, (2005).

Google Scholar