Design of Robust Control for Block Nonlinear Systems by Lyapunov Functions Method

Article Preview

Abstract:

This paper is devoted to robust control design for block multilinked nonlinear dynamical systems. Transformation of the block system to the single block system is proposed. For the considered block systems function of Lyapunov is designed. It is proved if the number of controls is equal to or more than the number of state variables of the block, then in the given area the closed-loop system conditions of stability followed controllability conditions. Control design accounts limitations of controls and state variables. Modeling results for nonlinear objects control systems are presented.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1049-1050)

Pages:

1048-1055

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Nise, Norman S. Control Systems Engineering, 6th ed. John Wiley & Sons, Inc. 2010. ISBN 978-0470-54756-4.

Google Scholar

[2] Gaiduk, A. R. Design of nonlinear selectively invariant systems based on the controllable Jordan form, Automation and remote control, Vol. 74, Issue: 7, Pp. 1061-1071, July (2013).

DOI: 10.1134/s0005117913070011

Google Scholar

[3] Tall, Issa Amadou and Respondek, Witold. Feedback classification of nonlinear single-input control systems with controllable linearization: normal forms, canonical forms, and invariants, SIAM Jornal on Control and Optimization, Vol. 41, Issue 5, Pp. 1498-1531, (2003).

DOI: 10.1137/s0363012900381753

Google Scholar

[4] Medvedev M.Y., Pshikhopov V. Kh. Robust control of nonlinear dynamic systems, Proc. of 2010 IEEE Latin-American Conference on Communications, September 14 – 17, 2010, Bogota, Colombia. ISBN: 978-1-4244-7172-0.

Google Scholar

[5] Pshikhopov, V., Medvedev, M. Block design of robust control systems by direct Lyapunov method, 18th IFAC World Congress, Volume 18, Issue PART 1, 2011, Pages 10875-10880.

DOI: 10.3182/20110828-6-it-1002.00006

Google Scholar

[6] Isidori A. Nonlinear control systems, 2nd edition. N.Y.: Springer-Verlag, (1989).

Google Scholar

[7] Pshikhopov V. Kh., Medvedev M. Y., and Gurenko B. V. Homing and Docking Autopilot Design for Autonomous Underwater Vehicle, Applied Mechanics and Materials Vols. 490-491 (2014).

DOI: 10.4028/www.scientific.net/amm.490-491.700

Google Scholar

[8] Pyatnickiy S.I. Controllability of Lagrange systems with limited controls, Automation and remote control, 1996, N 12. Pp. 29 – 37.

Google Scholar

[9] Maurer H., Osmolovskii N.P. Second order sufficient conditions for time-optimal bang-bang control. SIAM Journal on Control and Optimization. 2004, 42 (6), Pp. 2239 – 2263.

DOI: 10.1137/s0363012902402578

Google Scholar

[10] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The Mathematical Theory of Optimal Processes. John Wiley & Sons, Inc. New York, London, (1962).

DOI: 10.1017/s0008439500032112

Google Scholar

[11] V. Kh. Pshikhopov, V.A. Krukhmalev, M. Yu. Medvedev, R.V. Fedorenko, S.A. Kopylov, A. Yu. Budko, V.M. Chufistov, Adaptive control system design for robotic aircrafts, Proceedings - 2013 IEEE Latin American Robotics Symposium, LARS 2013  PP. 67 – 70. doi: 10. 1109/LARS. 2013. 59.

DOI: 10.1109/lars.2013.59

Google Scholar

[12] V. Pshikhopov, M. Medvedev, V. Kostjukov, R. Fedorenko, B. Gurenko, V. Krukhmalev, Airship autopilot design, SAE Technical Papers. October 18-21, 2011. doi: 10. 4271/2011-01-2736.

DOI: 10.4271/2011-01-2736

Google Scholar

[13] Pshikhopov, V., Medvedev, M., Gaiduk, A., Neydorf, R. , Belyaev, V., Fedorenko, R., Krukhmalev, V. Mathematical model of robot on base of airship. 2013 Proceedings of the IEEE Conference on Decision and Control, Pp. 959-964.

DOI: 10.1109/cdc.2013.6760006

Google Scholar

[14] Pshikhopov, V. Kh., Medvedev, M., Gaiduk, A., Belyaev, V., Fedorenko, R., Krukhmalev, V. Position-trajectory control system for robot on base of airship. 2013 Proceedings of the IEEE Conference on Decision and Control, Pp. 3590-3595.

DOI: 10.1109/cdc.2013.6760435

Google Scholar

[15] Pshikhopov, V. Kh., Medvedev, M. Yu., Gaiduk, A.R., Gurenko, B.V. Control system design for autonomous underwater vehicle. Proceedings – 2013 IEEE Latin American Robotics Symposium, LARS 2013  PP. 77 – 82. doi: 10. 1109/LARS. 2013. 61.

DOI: 10.1109/lars.2013.61

Google Scholar

[16] V. Pshikhopov, N. Sergeev, M. Medvedev, A. Kulchenko, The design of helicopter autopilot, SAE Technical Papers  5, 2012, doi: 10. 4271/2012-01-(2098).

DOI: 10.4271/2012-01-2098

Google Scholar

[17] V. Kh. Pshikhopov, M. Yu. Medvedev, B.V. Gurenko, and A.M. Maevsky. Indirect adaptive control for underwater vehicles on base of nonlinear estimator of disturbances. 2014 Proceedings of the 18th International Conference on Systems (part of CSCC '14). Santorini Island, Greece, July 17-21, 2014. Pp. 46 – 51. ISSN: 1790-5117. ISBN: 978-1-61804-243-9 (vol. 1), 978-1-61804-244-6 (vol. 2).

DOI: 10.4028/www.scientific.net/amm.799-800.1028

Google Scholar