Virtual Reactance Implementation Method for Droop-Controlled Three-Phase Microgrid Inverters Using SOGI Scheme

Article Preview

Abstract:

Because the line impedance of low-voltage microgrids is mainly resistive and the transfer impedance of microgrid inverters is usually mismatched, a virtual reactance is usually added to the control loop of each microgrid inverter. It is found that the existing two virtual reactance implementation methods introduce harmonic components into the voltage control units of microgrid inverters in the condition of nonlinear loads after the theory and simulation analyses. To solve the problem, a second-order general-integrator (SOGI) virtual impedance implementation method of droop-controlled three-phase microgrid inverters is proposed. Simulation results are provided to show the feasibility of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1049-1050)

Pages:

669-673

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. C. Chandorkar, D. M. Divan, Y. Hu, and B. Banerjee, Novel architec-ture and control for distributed UPS systems, in Proc. IEEE Appl. Power Electron. Conf. (APEC), 1994, p.683–689.

DOI: 10.1109/apec.1994.316332

Google Scholar

[2] M. Arias, D. G. Lamar, M. Rodriguez, M. Hernando, and A. Fernandez, Simple droop voltage control system for parallel operation of UPS, in Proc. IEEE Appl. Power Electron. Conf. (APEC) , 2008, p.1946–(1951).

DOI: 10.1109/apec.2008.4522994

Google Scholar

[3] W. Yao, M. Chen, J. Chen, and Z. Qian, An improved multiple-loop controller for parallel operation of single-phase inverters with no control interconnections, in Proc. IEEE Power Electron. Spec. Conf. (PESC), 2007 , p.448–452.

DOI: 10.1109/pesc.2007.4342029

Google Scholar

[4] J. M. Guerrero, J. Matas, L. G. de Vicu˜na, M. Castilla, and J. Miret, Wireless-control strategy for parallel operation of distributed generation inverters, IEEE Trans. Ind. Electron. , vol. 53, no. 5, p.1461–1470, Oct. (2006).

DOI: 10.1109/tie.2006.882015

Google Scholar

[5] J. -W. Kim, H. -S. Choi, and B. H. Cho, A novel droop method for converter parallel operation, IEEE Trans. Power Electron. , vol. 17, no. 1, p.25–32, Jan. (2002).

DOI: 10.1109/63.988666

Google Scholar

[6] A. R. Bergen, Power Systems Analysis. Englewood Cliffs, NJ: Prentice-Hall, (1986).

Google Scholar

[7] A. Tuladhar, T. H. J. Unger, and K. Mauch, Control of parallel inverters in distributed ac power systems with consideration of line impedance, IEEE Trans. Ind. Appl., vol. 36, no. 1, p.131–138, Jan. /Feb. (2000).

DOI: 10.1109/28.821807

Google Scholar

[8] T. -P. Chen, Dual-modulator compensation technique for parallel inverters using space-vector modulation, IEEE Trans. Ind. Electron. , vol. 56, no. 8, p.3004–3012, Aug. (2009).

DOI: 10.1109/tie.2009.2022515

Google Scholar

[9] J. M. Guerrero, L. G. de Vicu ˜na, J. Matas, M. Castilla, and J. Miret, Output impedance design for parallel-connected UPS inverters with wireless load-sharing control, IEEE Trans. Ind. Electron. , vol. 52, no. 4, p.1126–1135, Aug. (2005).

DOI: 10.1109/tie.2005.851634

Google Scholar

[10] Yun Wei Li , Ching-Nan Kao , An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low-Voltage Multibus Microgrid, , IEEE Trans. Power Electron. , vol. 24, no. 12, p.2977–2988, Dec. (2009).

DOI: 10.1109/tpel.2009.2022828

Google Scholar