[1]
M. Winter, R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 (2004) 4245-4269.
DOI: 10.1021/cr020730k
Google Scholar
[2]
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854.
Google Scholar
[3]
D. F. Yang, Application of Nanocomposites for Supercapacitors: Characteristics and properties, in: F. Ebrahimi (Ed. ), Nanocomposites-New Trends and Developments, Publisher: InTech, 2012, Chap. 12.
DOI: 10.5772/50409
Google Scholar
[4]
Q. Wang, J. L. Li, F. Gao, W. S. Li, K. Z. Wu, X. D. Wang, Activated carbon coated with polyaniline as an electrode material in supercapacitors, New Carbon Mater. 23 (2008) 275-280.
DOI: 10.1016/s1872-5805(08)60030-x
Google Scholar
[5]
J. J. Xu, K. Wang, S. Z. Zu, B. H. Han, Z. X. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage, ACS Nano 4 (2010) 5019-5026.
DOI: 10.1021/nn1006539
Google Scholar
[6]
P. S. Abthagir, K. Dhanalakshmi, R. Saraswathi, Thermal studies on polyindole and polycarbazole, Synth. Met. 93 (1998) 1-7.
DOI: 10.1016/s0379-6779(98)80125-2
Google Scholar
[7]
P. C. Pandey, R. Prakash, Electrochemical Synthesis of Polyindole and Its Evaluation for Rechargeable Battery Applications, J. Electrochem. Soc. 145 (1998) 999-1003.
DOI: 10.1149/1.1838377
Google Scholar
[8]
Z. J. Cai, X. J. Shi, Y. N. Fan, Electrochemical properties of electrospun polyindole nanofibers as a polymer electrode for lithium ion secondary battery, J. Power Sources 227 (2013) 53-59.
DOI: 10.1016/j.jpowsour.2012.10.081
Google Scholar
[9]
W. Q. Zhou, Y. K. Du, H. M. Zhang, J. K. Xu, P. Yang, High efficient electrocatalytic oxidation of formic acid on Pt/polyindoles composite catalysts, Electrochim. Acta 55 (2010) 2911-2917.
DOI: 10.1016/j.electacta.2010.01.017
Google Scholar
[10]
G. G. Rodríguez-Calero, M. A. Lowe, Y. Kiya, H. D. Abruña, Electrochemical and computational studies on the electrocatalytic effect of conducting polymers toward the redox reactions of thiadiazole-based thiolate compounds, J. Phys. Chem. C 114 (2010).
DOI: 10.1021/jp9076504
Google Scholar
[11]
F. Fusalba, H. A. Ho, L. Breau, D. Bélanger, Poly(Cyano-Substituted Diheteroareneethylene) as Active Electrode Material for Electrochemical Supercapacitors, Chem. Mater. 12 (2000) 2581-2589.
DOI: 10.1021/cm000011r
Google Scholar
[12]
H. Talbi, D. Billaud, Electrochemical properties of polyindole and poly(5-cyanoindole) in LiClO4-acetonitrile and in HCl and HClO4 solutions, Synth. Met. 93 (1998) 105-110.
DOI: 10.1016/s0379-6779(97)04098-8
Google Scholar
[13]
M. Yang, B. Cheng, H. Song, X. Chen, Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor, Electrochim. Acta 55 (2010) 7021-7027.
DOI: 10.1016/j.electacta.2010.06.077
Google Scholar
[14]
S. J. Bao, C. M. Li, C. X. Guo, Y. Qiao, Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors, J. Power Sources 180 (2008) 676-681.
DOI: 10.1016/j.jpowsour.2008.01.085
Google Scholar
[15]
D. W. Wang, F. Li, H. T. Fang, M. Liu, G. Q. Lu, H. M. Cheng, Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport, J. Phys. Chem. B 110 (2006) 8570-8575.
DOI: 10.1021/jp0572683
Google Scholar