Kinetics Study of Thermal Degradation of Epoxy Resins Modified with 2-(Diphenylphosphinyl)-1, 4-Benzenediol

Article Preview

Abstract:

Phosphorus-containing epoxy resins with different phosphorus content were obtained from 2-(Diphenylphosphinyl)-1, 4-benzenediol (DPO-HQ) and biphenyl-A epoxy resin by crosslinking with 4, 4’-diaminodiphenylsulfone (DDS). The thermal degradation kinetics of the modified epoxy resins containing different phosphorus content were investigated by dynamic thermogravimetric analysis (TGA) under air atmosphere with different heating rate. The degradation of epoxy resins containing flame retardant components were found to be changed. The additive of phosphorus increases the carbon residue and improves the thermal stability at elevated temperature. The kinetics of thermal degradation was evaluated by Kissinger method and Flynn-Wall-Ozawa method, which do not require knowledge of the reaction mechanism. The results showed that the activation energies at lower degree of the degradation decreased with increasing of phosphorus content, while increased at higher degree of the degradation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

240-244

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Rosu, C.N. Cascavaf, C. Ciobanu, L. Rosu. An inveatigation of the thermal degradation of epoxy maleate of biphenyl A. J. Anal. Appl. Pyrol. 2004, 72, 191-196.

DOI: 10.1016/j.jaap.2004.05.002

Google Scholar

[2] D. Y. Wang, Y. Z. Wang, J. S. Wang, D. Q. Chen, Q. Zhou, B. Yang, W. Y. Li. Thermal oxidative degradation behaviours of flame-retardant copolyesters containing phosphorous linked pendent group/montmorillonite nanocomposites. Polym. Degr. Stab., 2005, 87, 171-176.

DOI: 10.1016/j.polymdegradstab.2004.08.004

Google Scholar

[3] X. D. Wang, Q. Zhang. Synthesis characterization, and cure properties of phosphorus-containing epoxy resins for flame retardance. Eur. polym. J. 2004, 40, 385-395.

DOI: 10.1016/j.eurpolymj.2003.09.023

Google Scholar

[4] C. S. Wang, J. Y. Shieh. Polym. Synthesis and flame retardancy of phosphorus containing polycarbonate. Polymer Res. Taiwan, 1999, 6(3), 149-154.

DOI: 10.1007/s10965-006-0082-3

Google Scholar

[5] C. S. Wang, M. C. Lee. Synthesis, characterization, and properties of multifunctional naphthalene-containing epoxy resins cured with cyanate ester. J. Appl. Polym. Sci. 1999, 73, 1611-1622.

DOI: 10.1002/(sici)1097-4628(19990829)73:9<1611::aid-app2>3.0.co;2-8

Google Scholar

[6] C. S. Wu, Y. L. Liu. Thermal stability of epoxy resins containing flame retardant components: an evaluation with thermogravimetric analysis. Polym. Degrad. Stab. 2002, 78, 41-48.

DOI: 10.1016/s0141-3910(02)00117-9

Google Scholar

[7] Q.F. Wang, W. F. Shi. Kinetics study of thermal decomposition of epoxy resins containing flame retardant components. Polym. Degra. Stab. 2006, 91, 1747-1754.

DOI: 10.1016/j.polymdegradstab.2005.11.018

Google Scholar

[8] H. E. Kissinger. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29(11): 1702-1706.

DOI: 10.1021/ac60131a045

Google Scholar

[9] J.H. Flynm. The temperature integral, -its use and abuse. Thermochim Acta 1997, 300, 83-92.

Google Scholar

[10] L. S. Wang, X. L. Wang, G. L. Yan. Synthesis, characterization and flame retardance behaviour of poly(ethylene terephthalate) copolymer containing triaryl phosphine oxide. Polym. Degr. Stab., 2000, 69(1), 127-130.

DOI: 10.1016/s0141-3910(00)00050-1

Google Scholar