Influence of Sputtering Power on Structural and Optical Properties of ZnO Films Fabricated by RF Magnetron Sputtering

Article Preview

Abstract:

ZnO thin film has been fabricated on sapphire substrate (0001) using RF magnetron sputtering at room temperature. The influence of sputtering power ranging from 10 W to 70 W on the microstructural and optical properties of ZnO films is investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer. The AFM results show that with the increase of sputtering power, the size of ZnO crystalline increases first, then decrease and the maximum grain size occurs at 50 W. The XRD measurements indicate that the ZnO films with wurtzite structure are highly c-axis orientation and the film fabricated at 50 W has the best crystalline quality. Optical transmission spectra of the ZnO samples demonstrate that the ZnO film obtained at 50 W has the higher average transmission (above 90%) in the visible-light region and its optical band gap is 3.26 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

325-331

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Manoj K Y, Manoranjan G, Ranjit B, et al. Band-gap Variation in Mg- and Cd-doped ZnO Nanostructures and Molecular Clusters [J]. Phys. Rev. B. 2007, 76, 195450.

Google Scholar

[2] Litty I, Nampoori V P N., Radhakrishnan P, et al. Size-dependent Enhancement of Nonlinear Optical Properties in Nanocolloids of ZnO[J]. J. Appl. Phys. 2008, 103, 033105.

DOI: 10.1063/1.2838178

Google Scholar

[3] Schulze K, Maennig B, Leo K, et al. Organic Solar Cells on Indium Tin Oxide and Aluminum Doped Zinc Oxide Anodes[J]. Appl. Phys. Lett. 2007, 91, 073521.

DOI: 10.1063/1.2771050

Google Scholar

[4] Scheer R., Walter T., Schock H.W., Fearheiley M. L., and Lewerenz H. J., CuInS2 based thin film solar cell with 10. 2% efficiency[J], Appl. Phys. Lett., 1993, 63(24): 3294.

DOI: 10.1063/1.110786

Google Scholar

[5] LU Wen-zhong, JIA Xiao-long, HE Xiao-ming. Influences of Technical Conditions on the Structure of ZnO Films Deposited by DC Magnetic Control Sputtering [J]. Journal of Synthetic Crystals, 2004, 33, 1: 35~39.

Google Scholar

[6] Wei X H, Li Y R, Zhu J, et al. Epitaxial Properties of ZnO Thin Films on SrTiO3 Substrate Grown by Laser Molecular Beam Epitaxial[J]. Appl. phys. lett, 2007, 90: 151518-1-3.

DOI: 10.1063/1.2719026

Google Scholar

[7] Liu C, Chang S H, Noh T W, et al. Initial Growth Behavior and Resulting Microstructural Properties of Heteroepitaxial ZnO Thin Films on Sapphire (0001) Substrates[J]. Appl. phys. lett, 2007, 90: 011906-1-3.

DOI: 10.1063/1.2428489

Google Scholar

[8] N. A. Suvorova, I. O. Usov and L. Stan et al, Structural and optical properties of ZnO thin films by rf magnetron sputtering with rapid thermal annealing, [J]. Appl. Phys. Lett., 2008, 92, 141911: 1-3.

DOI: 10.1063/1.2896642

Google Scholar

[9] Kim N.H. and Kim H.W., Room temperature growth of high quality ZnO thin film on sapphire substrates, J. Mater. Sci., 2004, 39 (9): 3235-3236.

DOI: 10.1023/b:jmsc.0000025867.97303.74

Google Scholar

[10] Z.W. Liu C.K. Ong, Synthesis and size control of ZnO nanorods by conventional pulsed-laser deposition without catalyst [J]. Mater Lett. 2007, 61(16): 3329-3333.

DOI: 10.1016/j.matlet.2006.11.066

Google Scholar

[11] A.M. ALI, T. Inokuma, Y. Kurata, et al. Structural and Optical properties of Nanocrystalline Silicon Films Deposited by Plasma-Enhanced Chemical Vapor Deposition. Jpn[J]. J. Appl. Phys. 2002, 41: 169-175.

DOI: 10.1143/jjap.41.169

Google Scholar

[12] Srinivasan . G, and Kumar .J., Optical and Structural Characterisation of Zinc Oxide Thin Films Prepared by Sol-gel Process, Cryst. Res. Technol., 2005, 41(9): 893.

DOI: 10.1002/crat.200510690

Google Scholar

[13] J. P. Lin and J. M. Wu. The effect of annealing processes on electronic properties of sol-gel derived Al-doped ZnO films [J]. Appl. Phys. Lett., 2008, 92(13): 134103-1-3.

DOI: 10.1063/1.2905279

Google Scholar

[14] Sivaramakrishnan K. and Alford T.L., Metallic conductivity and the role of copper in ZnO/Cu/ZnO thin films for flexible electronics, Appl. Phys. Lett., 2009, 94(5): 052104.

DOI: 10.1063/1.3077184

Google Scholar