Multifractal, Structural and Optical Properties of HfO2 Thin Films

Article Preview

Abstract:

HfO2 films were sputter deposited under varying substrate temperatures (Ts) and their structural and morphological characteristics, optical properties were systematically studied by means of X-ray diffraction (XRD), atomic force microscope (AFM), and UV/VIS spectrophotometry. A statistical analysis based on multifractal formalism shows the uniformity of the height distribution increases as Ts is increased and the widths Δα of multifractal spetra are related to the average grain size D (-111) as Δα ∼ [D(-111)]-0.83. The monoclinic HfO2 is highly oriented along (-111) direction with increasing Ts. The Lattice expansion increases with diminishing HfO2 crystalline size below 7 nm while maximum lattice expansion occurs with highly oriented monoclinic HfO2 of crystalline size about 14.8 nm. The film growth process at Ts ≥ 200°C with surface diffusion energy of ∼ 0.29 eV is evident from the structural analysis of HfO2 films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

343-350

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.D. Pemmaraju and S. Sanvito, Phys. Rev. Lett. 94 (2004) 217205.

Google Scholar

[2] L. Armelo,H. Bertagnolli, D. Bleiner, M. Groenewolt, and S. Gross, Adv. Funct. Mater. 17 (2007)1671.

Google Scholar

[3] G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89 (2001) 52443.

Google Scholar

[4] S. Sayan, S. Aravamudhan, B.W. Busch, W.H. Schulte, F. Cosandey, G. D, wilk, T. Gustafsson, and E. Garfunkel, J. Vac. Sci. Technol. A20 (2002) 507.

Google Scholar

[5] T. Nishide, S. Honda, M. Matsuura, and M. Ide, Thin Solid Films 371 (2000) 61.

Google Scholar

[6] S.J. Wang, P.C. Lim, A.C.H. Huan, C.L. Liu, J.W. Chai, S.Y. Chow, J.S. Pan, Q. Li, and C.K. Ong, Appl. Phys. Lett. 82 (2003) (2047).

Google Scholar

[7] K. Cherkaoui, S. Monaghan, M.A. Negara, M. Modreanu, P.K. Hurley, D.O. Connell, S. McDonnell, G. Hughes, S. Wright, R.C. Barklie, P. Bailey, and T.C.Q. Noakes, J. Appl. Phys. 104 (2001) 064113.

DOI: 10.1063/1.2978209

Google Scholar

[8] S. Bruns, M. VergÖhl, O. Werner, and T. Wallendorf, Thin Solid Films 520(2012) 4122.

DOI: 10.1016/j.tsf.2011.07.014

Google Scholar

[9] B.B. Mandelbrot, Pure Appl. Geophys, 131(1989)5.

Google Scholar

[10] R. Lopes and N. Betrouni, Med. Image Anal. 13 (2009) 634.

Google Scholar

[11] D. Labat, A. Mangin, and R. Ababou, J. Hydrol 256 (2002) 176.

Google Scholar

[12] A. Chhabra and R.V. Jensen, Phys. Rev. Lett. 62(1989) 1327.

Google Scholar

[13] A Chaudhari, C.C.S. Yan and S.L. Lee, Appl. Surf. Sci. 238(2004)513.

Google Scholar

[14] D. Raoufi, H.R. Fallah, A Kiasatpour, and A.S.H. Rozatian Appl. Surf. Sci. 254 (2008)2168.

Google Scholar

[15] Z.W. Chen, X.P. Wang, S. Tan, S.Y. Zhang, J.G. Hou, and Z.Q. Wu, Phys. Rev. B63 (2001) 165413.

Google Scholar

[16] Cisneros-Morales and M.C. Aita, Appl. Phys. Lett. 96 (2010) 191904.

Google Scholar

[17] M Ohring, Materials Science of Thin Films, (Academic Press, San Diego 2002), p.641.

Google Scholar

[18] C.V. Ramana, K. Kamala. Bharathi, A. Garcia, and A.L. Campbell, J. Phys. Chem, C 116(2012)9955.

Google Scholar

[19] S.K. Gullapalli, R.S. Vemuri, and C.V. Ramana, Appl. Phys. Lett. 96 (2010) 171903.

Google Scholar

[20] H.J. Li, C.Y. Pu, C.Y. Ma, Sh. Li, W.J. Dong, S.Y. Bao, and Q.Y. Zhang, Thin Solid Films 520(2011) 212.

Google Scholar