Non-Polar ZnO Thin Films and LED Devices

Article Preview

Abstract:

ZnO materials have being researched in recent 30 years as a hot topic. ZnO is a third generation of semiconductor, it can be prepared into various forms of films and nanostructures, and they have excellent optical properties, electrical properties and magnetic properties. Because the polar ZnO’s quantum wells have a strong electric field, this will have a great impact on its optical properties. But non-polar ZnO has reduced such a strong electric field, so it greatly improved the luminescent performance. It’s more excellent than polar ZnO in the optical performance. In recent years, non-polar ZnO thin films’ research became increasingly evident. This article summed up the performances, preparations and applications of non-polar ZnO, and there are some suggestions. All of these are good to the further study of non-polar ZnO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

373-380

Citation:

Online since:

October 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wetzel C, Takeuchi T, Amano H et al. Quantized states in Ga(1-x)In(x)NGaN heterostructures and the model of polarized homogeneous quantum wells[J]. Phys Rev B, 2000, 62(20): R13302-R13305.

DOI: 10.1103/physrevb.62.r13302

Google Scholar

[2] Look D C. Recent advances in ZnO materials and devices [J]. Materials Science and Engineering B, 2001, 80(1-3): 383-387.

DOI: 10.1016/s0921-5107(00)00604-8

Google Scholar

[3] Look D C, Hemsky J W, Sizelove J R. Residual Native Shallow Donor in ZnO[J]. Phys. Revi. Lett, 1999, 82(12): 2552-2555.

DOI: 10.1103/physrevlett.82.2552

Google Scholar

[4] Vigue F, Vennegues P, Vezian S, et al. Defect Characterization in ZnO Layers Grown by Plasma-enhanced Molecular-beam Epitaxy on (0001) Sapphire Substrates[J]. Appl. Phys. Lett, 2001, 79(2): 194-196.

DOI: 10.1063/1.1384907

Google Scholar

[5] Zhang C Y, Li X M, Gao X D, et al. The Grain-boundary-related Optical and Electrical Properties in Polycrystallinep-type ZnO Films [J]. Chemical Physics Letters, 2006, 420(4-6): 448-452.

DOI: 10.1016/j.cplett.2006.01.019

Google Scholar

[6] Xiao Z Y, Liu Y C, Dong L, et al. The Effect of Surface Properties on Visible Luminescence of Nanosized Colloidal ZnO Membranes [J]. Journal of Colloid and Interface Science, 2005, 282(2): 403-407.

DOI: 10.1016/j.jcis.2004.08.111

Google Scholar

[7] Wei Z P, Lu Y M, Shen D Z, et al. Effect of Interface on Luminescence Properties in ZnO Mg ZnO Heterostructure[J]. J. Lumin, 2006, 119(120): 551-555.

DOI: 10.1016/j.jlumin.2006.01.056

Google Scholar

[8] A. L. Yang, H. P. Song, D. C. Liang et al. Yang, HP. Song,D. C. Liang et al. Photoluminescence spectroscopy and positron annihilation spectroscopy probe of alloying and annealing effects in nonpolar m-plane ZnMgO thin films[J]. Appl Phys Lett, 2010, 96(15): 151904-151904-3.

DOI: 10.1063/1.3394012

Google Scholar

[9] Lee J W, Kim J H, Han S K et al. Interface and defect structures in ZnO films on m-plane sapphire substrates[J]. J Cryst Growth, 2010, 312(2): 238-244.

DOI: 10.1016/j.jcrysgro.2009.10.023

Google Scholar

[10] Matsui H, Tabata H. Correlation of self-organized surface nanostructures and anisotropic electron transport in nonpolar ZnO (100) homoepitaxv[J]. J Appl Phys, 2006, 99(12): 124307-124314.

DOI: 10.1063/1.2207551

Google Scholar

[11] Matsui H, Hasuike N, Harima H et al. Growth evolution of surface nanowires and large anisotropy of conductivity on Mg ZnO ZnO quantum wells based on M-nonpolar (100) ZnO[J]. J Appl Phys, 2008, 104(9): 094309-094309-6.

DOI: 10.1063/1.3009959

Google Scholar

[12] Lim S H, Shindo D. Defects and interfaces in an epitaxial ZnOLiTaO3 heterostructure[J]. J Appl Phys, 2008, 88(9): 5107-5112.

Google Scholar

[13] Chou M M, Hang D R, Chen C et al. Epitaxial Growth of Nonpolar m-Plane ZnO (100) on Large-size LiGaO2 (100) Substrates[J]. Thin Solid Film, 2010, 519(11): 3627-3631.

DOI: 10.1016/j.tsf.2011.01.343

Google Scholar

[14] Chou M M, Chang L, Chung H Y et al. Growth and Characterization of Nnonpolar ZnO (100) Epitaxial Film on r-LiAlO2 Substrate by Chemical Vapor Deposition[J]. J Cryst Growth, 2007, 308(2): 412-416.

DOI: 10.1016/j.jcrysgro.2007.08.019

Google Scholar

[15] Lin W H, Wu J J, Chou M et al. Growth and Characterization of Nonpolar (100) Zn1-xMgxO (0=x=0113) Epitaxial Films: A Comparison of gamma-LiAlO2(100) and Sapphire (100) Substrates[J]. Cryst Growth Des, 2009, 9(7): 3301-3306.

DOI: 10.1021/cg900071z

Google Scholar

[16] Cagin E, Yang J, Wang W et al. Growth and Structural Properties of m-Plane ZnO on MgO (001) by Molecular Beam Epitaxy[J]. Appl Phys Lett, 2008, 92(23): 233505-233507.

DOI: 10.1063/1.2940305

Google Scholar

[17] Wang W L, Peng C Y, Ho Y T et al. Defects in m-Plane ZnO Epitaxial Films Grown on (112) LaAlO3 Substrate[J]. J Vac Sci Technol A, 2011, 29(3): 031001-031005.

DOI: 10.1116/1.3539046

Google Scholar

[18] Zhu J J, Aaltonen T, Venkatachalapathy V et al. Structural and optical properties of polar and non-polar ZnO films grown by MOVPE[J]. Journal of Crystal Growth, 2008, 310(23): 5020-5024.

DOI: 10.1016/j.jcrysgro.2008.07.117

Google Scholar

[19] Moriyama T, Fujita S. Growth Behavior of Nonpolar ZnO on M-plane and R-plane Sapphire by Metalorganic Vapor Phase Epitaxy[J]. Jpn J Appl Phys, 2005, 44(11): 7919-7921.

DOI: 10.1143/jjap.44.7919

Google Scholar

[20] Zubiaga A, Tuomisto F, Zu'niga-Pe'rez J et al. Characterization of Non-Polar ZnO Layers with Positron Annihilation Spectroscopy[J]. Acta Phys Pol A, 2008, 114(05): 1457-1464.

DOI: 10.12693/aphyspola.114.1257

Google Scholar

[21] Koida T, Chichibu S F, Uedono A et al. Radiative and nonradiative excitonic transitions in nonpolar (110) and polar (000) and (0001) ZnO epilayers[J]. Appl Phys Lett, 2004, 84(7): 1079-1081.

DOI: 10.1063/1.1646749

Google Scholar

[22] Dai J N, Han X Y, Wu Z H et al. Growth of non-polar ZnO films on a-GaNr-Al2O3 templates by radio-frequency magnetron sputtering[J]. J Alloys Compd, 2010, 489(2): 519-522.

DOI: 10.1016/j.jallcom.2009.09.098

Google Scholar

[23] Chen J J, Deng H, Li N et al. Realization of nonpolara-plane ZnO films on r-plane sapphire substrates using a simple single-source chemical vapor deposition[J]. Mater Lett, 2011, 65(4): 716-718.

DOI: 10.1016/j.matlet.2010.11.010

Google Scholar

[24] Kashiwaba Y, Abe T, Onodera S et al. Comparison of non-polar ZnO (110) films deposited on single crystal ZnO (110) and sapphire (012) substrates[J]. J Cryst Growth, 2007, 298: 477-480.

DOI: 10.1016/j.jcrysgro.2006.10.062

Google Scholar

[25] Abe T, Kashiwaba Y, Onodera S et al. Homoepitaxial growth of non-polar ZnO (110) films on off-angle ZnO substrates by MOCVD[J]. J Cryst Growth, 2007, 298: 457-460.

DOI: 10.1016/j.jcrysgro.2006.10.056

Google Scholar

[26] Tian J S, Liang M H, Ho Y T et al. Growth of a-plane ZnO thin films on LaAlO3(1 0 0) substrate by metal-organic chemical vapor deposition[J]. J Cryst Growth, 2008, 310(4): 777-782.

DOI: 10.1016/j.jcrysgro.2007.11.073

Google Scholar

[27] Y. T. Ho, W. L. Wang, C. Y. Peng et al. Growth of nonpolar (110) ZnO films on LaAlO3 (001) substrates[J]. Appl. Phys. Lett, 2008, 93(12): 121911-121911-3.

Google Scholar

[28] Chou M M, Hang D R, Wang S C et al. Growth and characterizations of nonpolar (1 1 0) ZnO on (1 0 0) (La, Sr) (Al, Ta)O3 substrate by chemical vapor deposition[J]. J Cryst Growth, 2010, 312(8): 1170-1174.

DOI: 10.1016/j.jcrysgro.2009.12.006

Google Scholar

[29] Liang Y C. Growth and characterization of nonpolar a-plane ZnO films on perovskite oxides with thin homointerlayer[J]. J Alloys Comp, 2010, 508(1): 158-161.

DOI: 10.1016/j.jallcom.2010.08.037

Google Scholar

[30] Lin H, Zhou S, Zhou J et al. Structural and optical properties of a-plane ZnO thin films synthesized on γ-LiAlO2 (302) substrates by low pressure metal-organic chemical vapor deposition[J]. Thin Solid Film, 2008, 516(18): 6079-6082.

DOI: 10.1016/j.tsf.2007.10.128

Google Scholar

[31] Zhou S, Zhou J, Huang T et al. Nonpolar a-plane ZnO films fabricated on (3 0 2)γ-LiAlO2 by pulsed laser deposition[J]. J Cryst Growth, 2007, 303(2): 510-514.

DOI: 10.1016/j.jcrysgro.2007.01.029

Google Scholar

[32] Zhang Y W, Li X M, Yu WD et al. Heteroepitaxial growth and luminescence properties of non-polar (110) orientation ZnO films on Si (001) substrates by pulsed laser deposition [J]. J Phys D Appl Phys, 2009, 42: 075410-075410-5.

DOI: 10.1088/0022-3727/42/7/075410

Google Scholar

[33] Huang T, Zhou S, Teng H et al. Growth and characterization of ZnO films on (0 0 1), (1 0 0) and (0 1 0) LiGaO2 substrates[J]. J Cryst Growth, 2008, 310(13): 3144-3148.

DOI: 10.1016/j.jcrysgro.2008.03.037

Google Scholar

[34] Liang Fengmin, Zhou Lingping, Peng Kun et al. Study on Pulsed Magnetron Sputtering Process for Preparing Microcrystalline Silicon Thin Films[J]. Materials Review B: Research papers, 2012, 26(11): 47-50(in Chinese).

Google Scholar

[35] Chen X, Guan W J, Fang G J et al. Influence of substrate temperature and post-treatment on the propertise of ZnO: Al thin films prepared by pulsed laser deposition[J]. Applied Surface Science, 2005, 252(5): 1561-1567.

DOI: 10.1016/j.apsusc.2005.02.137

Google Scholar

[36] Dong B Z, Fang G J, Wang J F et al. Effect of thickness on structure, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition[J]. Journal of Applied Physics, 2007, 101(3): 033713-033713-7.

DOI: 10.1063/1.2437572

Google Scholar

[37] Dai D H, Liu M, Yu Z M et al. Film and surface coating technology of modern[M], 2008, Changsha: Central South University Press, 2008: 64-593(in Chinese).

Google Scholar