Overview on Double Ceramic Layer Thermal Barrier Coatings

Article Preview

Abstract:

Thermal barrier coatings (TBCs) system has been the subject of vigorous research over the past decade, driven by the demands for enhanced reliability and substantially higher operating temperature envisaged for the next generations of gas turbine engines. As a novel structure system, the double ceramic layer design is a promising TBCs structure system , especially its long thermal cycling lifetime compared with the single ceramic layer. This paper mainly reviewed of development situation and the existing problems of several mainly double ceramic layer thermal barrier systems, including M-YSZ/YSZ, A2B2O7/YSZ, LTA/YSZ, LnMA/YSZ, ABO3/YSZ and so on. Many challenges remain but healthy and growing collaborations between the science and technology communities bode well for future progress in this area.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

364-372

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.P. Padture, M. Gell, E.H. Jordan. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 296(2002) 280-284.

DOI: 10.1126/science.1068609

Google Scholar

[2] R. Vassen, H. Kassner, A. Stuke, et al. Advanced thermal spray technologies for applications in energy systems[J]. Surf Coat Technol, 202(2008) 4432–4437.

Google Scholar

[3] X.Q. Cao, R. Vassen, D. Stöever. Ceramic materials for thermal barrier coatings[J]. J Eur Ceram Soc, 24(2004)1-10.

Google Scholar

[4] R. Vaßen, M.O. Jarligo, T. Steinke, et al. Overview on advanced thermal barrier coatings[J]. Surf Coat Technol, 205(2010)938-942.

DOI: 10.1016/j.surfcoat.2010.08.151

Google Scholar

[5] Z.G. Liu, J.H. Ouyang, Y. Zhou, et al. Influence of ytterbium- and samarium-oxides codoping on structure and thermal conductivity of zirconate ceramics[J]. J Eur Ceram Soc, 29 (2009) 647-652.

DOI: 10.1016/j.jeurceramsoc.2008.07.033

Google Scholar

[6] Y.H. Wang, J.H. Ouyang, Z.G. Liu. Preparation and thermo-physical properties of La1−xNdxMgAl11O19 (x=0, 0. 1, 0. 2) ceramics[J]. J Alloys Compd, 485(2009)734-738.

DOI: 10.1016/j.jallcom.2009.06.068

Google Scholar

[7] R. Gadow, M. Lischka. Lanthanum hexaaluminate-novel thermal barrier coatings for gas turbine applications-materials and process development[J]. Surf Coat Technol, 151-152 (2002) 392-399.

DOI: 10.1016/s0257-8972(01)01642-5

Google Scholar

[8] R. Vassen, X.Q. Cao, F. Tietz, et al. Zirconates as New Materials for Thermal Barrier Coatings[J]. J Am Ceram Soc, 83(2000)2023-(2028).

DOI: 10.1111/j.1151-2916.2000.tb01506.x

Google Scholar

[9] X. Cao, R. Vassen, W. Fischer, et al. Lanthanum–cerium oxide as a thermal barrier-coating material for high-temperature applications[J]. Adv Mater, 15(2003)1438-1442.

DOI: 10.1002/adma.200304132

Google Scholar

[10] D.R. Clarke. Materials selection guidelines for low thermal conductivity thermal barrier coatings[J]. Surf Coat Technol, 163-164(2003)67-74.

DOI: 10.1016/s0257-8972(02)00593-5

Google Scholar

[11] H.B. Zhao, M.R. Begley, A. Heuer, et al. Reaction, transformation and delamination of samarium zirconate thermal barrier coatings[J]. Surf Coat Technol, 205(2011)4355-4365.

DOI: 10.1016/j.surfcoat.2011.03.028

Google Scholar

[12] Z.G. Liu, J.H. Ouyang, Y. Zhou, et al. High-temperature hot corrosion behavior of gadolinium zirconate by vanadium pentoxide and sodium sulfate in air[J]. J Eur Ceram Soc, 30 (2010) 2707-2713.

DOI: 10.1016/j.jeurceramsoc.2010.05.002

Google Scholar

[13] Q.L. Wei, H.B. Guo, S.K. Gong, et al. Novel microstructure of EB-PVD double ceramic layered thermal barrier coatings[J]. Thin Solid Films, 516(2008) 5736-5739.

DOI: 10.1016/j.tsf.2007.07.032

Google Scholar

[14] M.A. Subramanian, G. Aravamudan, G.V. Subba Rao. Oxide pyrochlores - a review[J]. Prog Solid State Chem, 15(1983) 55-143.

DOI: 10.1016/0079-6786(83)90001-8

Google Scholar

[15] H. Dai, X.H. Zhong, J.Y. Li, et al. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness[J]. Mater Sci Eng A, 433(2006) 1-7.

DOI: 10.1016/j.msea.2006.04.075

Google Scholar

[16] L. Wang, Y. Wang, X.G. Sun, et al. Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J]. Ceram Int, 38(2012): 3595-3606.

DOI: 10.1016/j.ceramint.2011.12.076

Google Scholar

[17] Z.H. Xu, L.M. He, R.D. Mu, et al. Double-ceramic-layer thermal barrier coatings of La2Zr2O7/YSZ deposited by electron beam-physical vapor deposition[J]. J Alloys Compd, 473(2009): 509-515.

DOI: 10.1016/j.jallcom.2008.06.064

Google Scholar

[18] L. Wang, Y. Wang, G. Sun, et al. Finite element simulation of residual stress of double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings using birth and death element technique[J]. Comp Mater Sci, 53(2012) 117-127.

DOI: 10.1016/j.commatsci.2011.09.028

Google Scholar

[19] L. Wang, Y. Wang, W.Q. Zhang, et al. Finite element simulation of stress distribution and development in 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings during thermal shock[J]. Appl Surf Sci, 258(2012) 3540-3551.

DOI: 10.1016/j.apsusc.2011.11.109

Google Scholar

[20] G. Moskal, L. Swadźb, M. Hetmańczyk, et al. Characterisation of the microstructure and thermal properties of Nd2Zr2O7 and Nd2Zr2O7/YSZ thermal barrier coatings[J]. J Eur Ceram Soc, 32(2012) 2035-(2042).

DOI: 10.1016/j.jeurceramsoc.2011.12.004

Google Scholar

[21] W. Ma, S.K. Gong, H.F. Li, et al. Novel thermal barrier coatings based on La2Ce2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition[J]. Surf Coat Technol, 202 (2008) 2704-2708.

DOI: 10.1016/j.surfcoat.2007.09.047

Google Scholar

[22] X.Q. Cao, J.Y. Li, X.H. Zhong, et al. La2(Zr0. 7Ce0. 3)2O7—A new oxide ceramic material with high sintering-resistance[J]. Mater Lett, 62(2008) 2667-2669.

DOI: 10.1016/j.matlet.2008.01.009

Google Scholar

[23] Z.H. Xu, S.M. He, L.M. He, et al. Novel thermal barrier coatings based on La2(Zr0. 7Ce0. 3)2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition[J]. J Alloys Compd, 509(2011): 4273-4283.

DOI: 10.1016/j.jallcom.2010.12.203

Google Scholar

[24] Z.H. Xu, L.M. He, R.D. Mu, et al. Thermal cycling behavior of YSZ and La2(Zr0. 7Ce0. 3)2O7 as double-ceramic-layer systems EB-PVD TBCs[J]. J Alloys Compd, 525(2012) 87-96.

DOI: 10.1016/j.jallcom.2012.02.079

Google Scholar

[25] Z.H. Xu, L.M. He, R.D. Mu, et al. Double-ceramic-layer thermal barrier coatings based on La2(Zr0. 7Ce0. 3)2O7/La2Ce2O7 deposited by electron beam-physical vapor deposition[J]. Appl Surf Sci, 256(2010) 3661-3668.

DOI: 10.1016/j.apsusc.2010.01.004

Google Scholar

[26] X.Q. Cao, R. Vassen, F. Tietz, et al. New double-ceramic-layer thermal barrier coatings based on zirconia–rare earth composite oxides[J]. J Eur Ceram Soc, 26(2006): 247-251.

DOI: 10.1016/j.jeurceramsoc.2004.11.007

Google Scholar

[27] H.B. Guo, X.Y. Xie, H.B. Xu, et al. Manufacturing of thermal barrier coating with column structure ceramic layer, China Patent No. ZL200710118236. 5, 16 Sept (2009).

Google Scholar

[28] M. Kasunic, A. Meden, S.D. Skapin, et al. Structure of LaTi2Al9O19 and reanalysis of the crystal structure of La3Ti5Al15O37[J]. Acta Crystallogr B, 67(2011) 455-460.

Google Scholar

[29] X.Y. Xie, H.B. Guo, S.K. Gong, et al. Lanthanum-titanium-aluminum oxide: a novel thermal barrier coating material for applications at 1300°C[J]. J Eur Ceram Soc, 31 (2011) 1677-1683.

DOI: 10.1016/j.jeurceramsoc.2011.03.036

Google Scholar

[30] X.Y. Xie, H.B. Guo, S.K. Gong, et al. Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame[J]. Surf Coat Technol, 205 (2011) 4291-4298.

DOI: 10.1016/j.surfcoat.2011.03.047

Google Scholar

[31] X.Y. Xie, H.B. Guo, S.K. Gong, et al. Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings[J]. Chinese J Aeronaut, 25(2012) 137-142.

DOI: 10.1016/s1000-9361(11)60372-5

Google Scholar

[32] J. Xu, X.S. Ma, Y.F. Shen, et al. Crystal morphology of magnetoplumbite structure LaMgAl11O19[J]. Prog Mater Sci, 5(1991) 502-507.

Google Scholar

[33] X.L. Chen, Y. Zhao, L.J. Gu, et al. Hot corrosion behaviour of plasma sprayed YSZ/ LaMgAl11O19 composite coatings in molten sulfate–vanadate salt[J]. Corros Sci, 53(2011) 2335-2343.

DOI: 10.1016/j.corsci.2011.03.019

Google Scholar

[34] X.L. Chen, Y. Zhao, X.Z. Fan, et al. Thermal cycling failure of new LaMgAl11O19/YSZ double ceramic top coat thermal barrier coating systems[J]. Surf Coat Technol, 205(2011)3293–3300.

DOI: 10.1016/j.surfcoat.2010.11.059

Google Scholar

[35] W. Ma, M.O. Jarligo, R. Vaßen, et al. New generation perovskite thermal barrier coating materials[J]. J Therm Spray Techn, 17(2008) 831-837.

DOI: 10.1007/s11666-008-9239-4

Google Scholar

[36] W. Ma, D.E. Mack, R. Vaßen, et al. Perovskite-type strontium zirconate as a new material for thermal barrier coatings[J]. J Am Ceram Soc, 91(2008) 2630–2635.

DOI: 10.1111/j.1551-2916.2008.02472.x

Google Scholar

[37] M.O. Jarligo, G. Mauer, D. Sebold, et al. Decomposition of Ba(Mg1/3Ta2/3)O3 perovskite during atmospheric plasma spraying[J]. Surf Coat Technol, 206 (2012) 2515-2520.

DOI: 10.1016/j.surfcoat.2011.11.003

Google Scholar

[38] J.R. Nicholls. Advances in coating design for high performance gas turbines[J]. MRS Bulletin, 28(2003) 659-670.

DOI: 10.1557/mrs2003.194

Google Scholar

[39] C. Ren, Y.D. He, D.R. Wang. Cyclic oxidation behavior and thermal barrier effect of YSZ– (Al2O3/YAG) double-layer TBCs prepared by the composite sol–gel method[J]. Surf Coat Technol, 206(2011) 1461-1468.

DOI: 10.1016/j.surfcoat.2011.09.025

Google Scholar

[40] C. Ren, Y.D. He, D.R. Wang. Fabrication and Characteristics of YSZ–YSZ/Al2O3 Double-Layer TBC[J]. Oxid Met, 75(2011) 325-335.

DOI: 10.1007/s11085-011-9236-8

Google Scholar

[41] Y. Waku, H. Ohtsubo, N. Nakagawa, et al. High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite[J]. J Mater Sci, 33(1998) 1217-1225.

DOI: 10.1023/a:1004377626345

Google Scholar

[42] A. Nakatsuka, A. Yoshiasa , T. Yamanaka. Cation distribution and crystal chemistry of Y3Al5-xGaxO12 (0≤x≤5) garnet solid solutions[J]. Acta Crystallogr B, 55(1999): 266-272.

DOI: 10.1107/s0108768198012567

Google Scholar

[43] S. Ochiai, T. Ueda, K. Sato, et al. Deformation and fracture behavior of an Al2O3/YAG composite from room temperature to 2023K[J]. Compos Sci Technol, 61(2011) 2117-2128.

DOI: 10.1016/s0266-3538(01)00159-2

Google Scholar