[1]
N.P. Padture, M. Gell, E.H. Jordan. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 296(2002) 280-284.
DOI: 10.1126/science.1068609
Google Scholar
[2]
R. Vassen, H. Kassner, A. Stuke, et al. Advanced thermal spray technologies for applications in energy systems[J]. Surf Coat Technol, 202(2008) 4432–4437.
Google Scholar
[3]
X.Q. Cao, R. Vassen, D. Stöever. Ceramic materials for thermal barrier coatings[J]. J Eur Ceram Soc, 24(2004)1-10.
Google Scholar
[4]
R. Vaßen, M.O. Jarligo, T. Steinke, et al. Overview on advanced thermal barrier coatings[J]. Surf Coat Technol, 205(2010)938-942.
DOI: 10.1016/j.surfcoat.2010.08.151
Google Scholar
[5]
Z.G. Liu, J.H. Ouyang, Y. Zhou, et al. Influence of ytterbium- and samarium-oxides codoping on structure and thermal conductivity of zirconate ceramics[J]. J Eur Ceram Soc, 29 (2009) 647-652.
DOI: 10.1016/j.jeurceramsoc.2008.07.033
Google Scholar
[6]
Y.H. Wang, J.H. Ouyang, Z.G. Liu. Preparation and thermo-physical properties of La1−xNdxMgAl11O19 (x=0, 0. 1, 0. 2) ceramics[J]. J Alloys Compd, 485(2009)734-738.
DOI: 10.1016/j.jallcom.2009.06.068
Google Scholar
[7]
R. Gadow, M. Lischka. Lanthanum hexaaluminate-novel thermal barrier coatings for gas turbine applications-materials and process development[J]. Surf Coat Technol, 151-152 (2002) 392-399.
DOI: 10.1016/s0257-8972(01)01642-5
Google Scholar
[8]
R. Vassen, X.Q. Cao, F. Tietz, et al. Zirconates as New Materials for Thermal Barrier Coatings[J]. J Am Ceram Soc, 83(2000)2023-(2028).
DOI: 10.1111/j.1151-2916.2000.tb01506.x
Google Scholar
[9]
X. Cao, R. Vassen, W. Fischer, et al. Lanthanum–cerium oxide as a thermal barrier-coating material for high-temperature applications[J]. Adv Mater, 15(2003)1438-1442.
DOI: 10.1002/adma.200304132
Google Scholar
[10]
D.R. Clarke. Materials selection guidelines for low thermal conductivity thermal barrier coatings[J]. Surf Coat Technol, 163-164(2003)67-74.
DOI: 10.1016/s0257-8972(02)00593-5
Google Scholar
[11]
H.B. Zhao, M.R. Begley, A. Heuer, et al. Reaction, transformation and delamination of samarium zirconate thermal barrier coatings[J]. Surf Coat Technol, 205(2011)4355-4365.
DOI: 10.1016/j.surfcoat.2011.03.028
Google Scholar
[12]
Z.G. Liu, J.H. Ouyang, Y. Zhou, et al. High-temperature hot corrosion behavior of gadolinium zirconate by vanadium pentoxide and sodium sulfate in air[J]. J Eur Ceram Soc, 30 (2010) 2707-2713.
DOI: 10.1016/j.jeurceramsoc.2010.05.002
Google Scholar
[13]
Q.L. Wei, H.B. Guo, S.K. Gong, et al. Novel microstructure of EB-PVD double ceramic layered thermal barrier coatings[J]. Thin Solid Films, 516(2008) 5736-5739.
DOI: 10.1016/j.tsf.2007.07.032
Google Scholar
[14]
M.A. Subramanian, G. Aravamudan, G.V. Subba Rao. Oxide pyrochlores - a review[J]. Prog Solid State Chem, 15(1983) 55-143.
DOI: 10.1016/0079-6786(83)90001-8
Google Scholar
[15]
H. Dai, X.H. Zhong, J.Y. Li, et al. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness[J]. Mater Sci Eng A, 433(2006) 1-7.
DOI: 10.1016/j.msea.2006.04.075
Google Scholar
[16]
L. Wang, Y. Wang, X.G. Sun, et al. Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J]. Ceram Int, 38(2012): 3595-3606.
DOI: 10.1016/j.ceramint.2011.12.076
Google Scholar
[17]
Z.H. Xu, L.M. He, R.D. Mu, et al. Double-ceramic-layer thermal barrier coatings of La2Zr2O7/YSZ deposited by electron beam-physical vapor deposition[J]. J Alloys Compd, 473(2009): 509-515.
DOI: 10.1016/j.jallcom.2008.06.064
Google Scholar
[18]
L. Wang, Y. Wang, G. Sun, et al. Finite element simulation of residual stress of double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings using birth and death element technique[J]. Comp Mater Sci, 53(2012) 117-127.
DOI: 10.1016/j.commatsci.2011.09.028
Google Scholar
[19]
L. Wang, Y. Wang, W.Q. Zhang, et al. Finite element simulation of stress distribution and development in 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings during thermal shock[J]. Appl Surf Sci, 258(2012) 3540-3551.
DOI: 10.1016/j.apsusc.2011.11.109
Google Scholar
[20]
G. Moskal, L. Swadźb, M. Hetmańczyk, et al. Characterisation of the microstructure and thermal properties of Nd2Zr2O7 and Nd2Zr2O7/YSZ thermal barrier coatings[J]. J Eur Ceram Soc, 32(2012) 2035-(2042).
DOI: 10.1016/j.jeurceramsoc.2011.12.004
Google Scholar
[21]
W. Ma, S.K. Gong, H.F. Li, et al. Novel thermal barrier coatings based on La2Ce2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition[J]. Surf Coat Technol, 202 (2008) 2704-2708.
DOI: 10.1016/j.surfcoat.2007.09.047
Google Scholar
[22]
X.Q. Cao, J.Y. Li, X.H. Zhong, et al. La2(Zr0. 7Ce0. 3)2O7—A new oxide ceramic material with high sintering-resistance[J]. Mater Lett, 62(2008) 2667-2669.
DOI: 10.1016/j.matlet.2008.01.009
Google Scholar
[23]
Z.H. Xu, S.M. He, L.M. He, et al. Novel thermal barrier coatings based on La2(Zr0. 7Ce0. 3)2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition[J]. J Alloys Compd, 509(2011): 4273-4283.
DOI: 10.1016/j.jallcom.2010.12.203
Google Scholar
[24]
Z.H. Xu, L.M. He, R.D. Mu, et al. Thermal cycling behavior of YSZ and La2(Zr0. 7Ce0. 3)2O7 as double-ceramic-layer systems EB-PVD TBCs[J]. J Alloys Compd, 525(2012) 87-96.
DOI: 10.1016/j.jallcom.2012.02.079
Google Scholar
[25]
Z.H. Xu, L.M. He, R.D. Mu, et al. Double-ceramic-layer thermal barrier coatings based on La2(Zr0. 7Ce0. 3)2O7/La2Ce2O7 deposited by electron beam-physical vapor deposition[J]. Appl Surf Sci, 256(2010) 3661-3668.
DOI: 10.1016/j.apsusc.2010.01.004
Google Scholar
[26]
X.Q. Cao, R. Vassen, F. Tietz, et al. New double-ceramic-layer thermal barrier coatings based on zirconia–rare earth composite oxides[J]. J Eur Ceram Soc, 26(2006): 247-251.
DOI: 10.1016/j.jeurceramsoc.2004.11.007
Google Scholar
[27]
H.B. Guo, X.Y. Xie, H.B. Xu, et al. Manufacturing of thermal barrier coating with column structure ceramic layer, China Patent No. ZL200710118236. 5, 16 Sept (2009).
Google Scholar
[28]
M. Kasunic, A. Meden, S.D. Skapin, et al. Structure of LaTi2Al9O19 and reanalysis of the crystal structure of La3Ti5Al15O37[J]. Acta Crystallogr B, 67(2011) 455-460.
Google Scholar
[29]
X.Y. Xie, H.B. Guo, S.K. Gong, et al. Lanthanum-titanium-aluminum oxide: a novel thermal barrier coating material for applications at 1300°C[J]. J Eur Ceram Soc, 31 (2011) 1677-1683.
DOI: 10.1016/j.jeurceramsoc.2011.03.036
Google Scholar
[30]
X.Y. Xie, H.B. Guo, S.K. Gong, et al. Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame[J]. Surf Coat Technol, 205 (2011) 4291-4298.
DOI: 10.1016/j.surfcoat.2011.03.047
Google Scholar
[31]
X.Y. Xie, H.B. Guo, S.K. Gong, et al. Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings[J]. Chinese J Aeronaut, 25(2012) 137-142.
DOI: 10.1016/s1000-9361(11)60372-5
Google Scholar
[32]
J. Xu, X.S. Ma, Y.F. Shen, et al. Crystal morphology of magnetoplumbite structure LaMgAl11O19[J]. Prog Mater Sci, 5(1991) 502-507.
Google Scholar
[33]
X.L. Chen, Y. Zhao, L.J. Gu, et al. Hot corrosion behaviour of plasma sprayed YSZ/ LaMgAl11O19 composite coatings in molten sulfate–vanadate salt[J]. Corros Sci, 53(2011) 2335-2343.
DOI: 10.1016/j.corsci.2011.03.019
Google Scholar
[34]
X.L. Chen, Y. Zhao, X.Z. Fan, et al. Thermal cycling failure of new LaMgAl11O19/YSZ double ceramic top coat thermal barrier coating systems[J]. Surf Coat Technol, 205(2011)3293–3300.
DOI: 10.1016/j.surfcoat.2010.11.059
Google Scholar
[35]
W. Ma, M.O. Jarligo, R. Vaßen, et al. New generation perovskite thermal barrier coating materials[J]. J Therm Spray Techn, 17(2008) 831-837.
DOI: 10.1007/s11666-008-9239-4
Google Scholar
[36]
W. Ma, D.E. Mack, R. Vaßen, et al. Perovskite-type strontium zirconate as a new material for thermal barrier coatings[J]. J Am Ceram Soc, 91(2008) 2630–2635.
DOI: 10.1111/j.1551-2916.2008.02472.x
Google Scholar
[37]
M.O. Jarligo, G. Mauer, D. Sebold, et al. Decomposition of Ba(Mg1/3Ta2/3)O3 perovskite during atmospheric plasma spraying[J]. Surf Coat Technol, 206 (2012) 2515-2520.
DOI: 10.1016/j.surfcoat.2011.11.003
Google Scholar
[38]
J.R. Nicholls. Advances in coating design for high performance gas turbines[J]. MRS Bulletin, 28(2003) 659-670.
DOI: 10.1557/mrs2003.194
Google Scholar
[39]
C. Ren, Y.D. He, D.R. Wang. Cyclic oxidation behavior and thermal barrier effect of YSZ– (Al2O3/YAG) double-layer TBCs prepared by the composite sol–gel method[J]. Surf Coat Technol, 206(2011) 1461-1468.
DOI: 10.1016/j.surfcoat.2011.09.025
Google Scholar
[40]
C. Ren, Y.D. He, D.R. Wang. Fabrication and Characteristics of YSZ–YSZ/Al2O3 Double-Layer TBC[J]. Oxid Met, 75(2011) 325-335.
DOI: 10.1007/s11085-011-9236-8
Google Scholar
[41]
Y. Waku, H. Ohtsubo, N. Nakagawa, et al. High-temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite[J]. J Mater Sci, 33(1998) 1217-1225.
DOI: 10.1023/a:1004377626345
Google Scholar
[42]
A. Nakatsuka, A. Yoshiasa , T. Yamanaka. Cation distribution and crystal chemistry of Y3Al5-xGaxO12 (0≤x≤5) garnet solid solutions[J]. Acta Crystallogr B, 55(1999): 266-272.
DOI: 10.1107/s0108768198012567
Google Scholar
[43]
S. Ochiai, T. Ueda, K. Sato, et al. Deformation and fracture behavior of an Al2O3/YAG composite from room temperature to 2023K[J]. Compos Sci Technol, 61(2011) 2117-2128.
DOI: 10.1016/s0266-3538(01)00159-2
Google Scholar