Preparation and Characterization of Polysulfone/Ru Nanocluster Hybrid Hollow Fiber Membrane

Article Preview

Abstract:

Polysulfone/Ru nanocluster hybrid hollow fiber membranes with different Ru content were fabricated by the dry/wet spinning process. The structures and properties of Ru nanocluster, PSF hollow films and PSF/Ru hybrid hollow fiber films were characterized by TEM, SEM, XPS, XRD, TGA, etc. The results showed that the Ru particles, which may coordinate with O and S in polysulfone, distributed symmetrically with an average diameter about 1~2 nm. More finger-like pores of the hybrid membranes were obtained after adding Ru nanocluster, and the thermal properties of the membranes increased while the mechanical properties decreased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

357-363

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zhang, Y. Wang, Y. You, H. Meng, J. Zhang, X. Xu, Preparation, performance and adsorption activity of TiO2 nanoparticles entrapped PVDF hybrid membranes[J], Appl. Surf. Sci. 263 (2012) 660-665.

DOI: 10.1016/j.apsusc.2012.09.131

Google Scholar

[2] L. Yu, Z. Xu, H. Shen, H. Yang, Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol–gel method[J], J. Membr. Sci. 337 (2009) 257-265.

DOI: 10.1016/j.memsci.2009.03.054

Google Scholar

[3] N.A.A. Hamid, A.F. Ismail, T. Matsuura, A.W. Zularisam, W.J. Lau, E. Yuliwati, M.S. Abdullah, Morphological and separation performance study of polysulfone/titanium dioxide(PSF/TiO2) ultrafiltration membranes for humic acid removal[J], Desalination. 273 (2011).

DOI: 10.1016/j.desal.2010.12.052

Google Scholar

[4] S.C. Pesek, W.J. Koros, Aqueous quenched asymmetric polysulfone hollow fibers prepared by dry/wet phase separation[J], J. Membr. Sci. 88 (1994) 1-19.

DOI: 10.1016/0376-7388(93)e0150-i

Google Scholar

[5] T. He, L.A.M. Versteeg, M.H.V. Mulder, M. Wessling, Composite hollow fiber membranes for organic solvent-based liquid–liquid extraction[J], J. Membr. Sci. 234 (2004) 1–10.

DOI: 10.1016/j.memsci.2003.12.015

Google Scholar

[6] A. Idris, A.F. Ismail, M.Y. Noordin, S.J. Shilton, Optimization of cellulose acetate hollow fiber reverse osmosis membrane production using Tagushi method[J], J. Membr. Sci. 205 (2002) 223–237.

DOI: 10.1016/s0376-7388(02)00116-3

Google Scholar

[7] M. Khayet, The effects of air gap length on the internal and external morphology of hollowfiber membranes[J], Chem. Eng. Sci. 58 (2003) 3091–3104.

DOI: 10.1016/s0009-2509(03)00186-6

Google Scholar

[8] Q. Yang, T.S. Chung, Y.W. Santoso, Tailoring pore size and pore size distribution of kidney dialysis hollowfiber membranes via dual-bath coagulation approach[J], J. Membr. Sci. 290 (2007) 153–163.

DOI: 10.1016/j.memsci.2006.12.036

Google Scholar

[9] K.Y. Wang, T. Matsuura, T.S. Chung, W.F. Guo, The effects of flow angle and shear rate with the spinneret on the separation performance of poly(ethersulfone) (PES) ultrafiltration hollowfiber membranes[J], J. Membr. Sci. 240 (2004) 67–79.

DOI: 10.1016/j.memsci.2004.04.012

Google Scholar

[10] M. Khayet, C.Y. Feng, K.C. Khulbe, T. Matsuura, Study on the effect of a non-solvent additive on the morphology and performance of ultrafiltration hollow-fiber membranes[J], Desalination 148 (2002) 31–37.

DOI: 10.1016/s0011-9164(02)00724-5

Google Scholar

[11] J. Qin, T.S. Chung, Effect of dope flow rate on the morphology, separation performance, thermal and mechanical properties of ultrafiltration hollow fiber membranes[J], J. Membr. Sci. 157 (1999) 35–51.

DOI: 10.1016/s0376-7388(98)00361-5

Google Scholar

[12] A.F. Ismail, M.I. Mustaffar, R.M. Illias, M.S. Abdullah, Effect of dope extrusion rate on morphology and performance of hollow fibers membrane for ultrafiltation[J], Sep. Purf. Technol. 49 (2006) 10–19.

DOI: 10.1016/j.seppur.2005.08.001

Google Scholar

[13] S. Rafiq, Z. Mana, A. Maulud, N. Muhammad, S. Maitra, Separation of CO2 from CH4 using polysulfone/polyimide silica nanocomposite membranes[J], Separation and Purification, Technology. 90 (2012)162-172.

DOI: 10.1016/j.seppur.2012.02.031

Google Scholar

[14] V. Vatanpour, S. S. Madaeni, A. R. Khataee, et al, TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance[J], Desalination. 292 (2012) 19–29.

DOI: 10.1016/j.desal.2012.02.006

Google Scholar

[15] M. F. A. Wahab, A. F. Ismail, S. J. Shilton, Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers[J], Sep. Purif. Technol. 86 (2012) 41–48.

DOI: 10.1016/j.seppur.2011.10.018

Google Scholar

[16] G. J. Dahe, R. S. Teotia, J. R. Bellare, The role of zeolite nanoparticles additive on morphology, mechanical properties and performance of polysulfone hollow fiber membranes[J], Chem. Eng. J. 197 (2012) 398–406.

DOI: 10.1016/j.cej.2012.05.037

Google Scholar

[17] B. Topuz, L. Yilmaz, H. Kalipcilar, Development of alumina supported ternary mixed matrix membranes for separation of H2/light-alkane mixtures[J], J. Membr. Sci. 415–416 (2012) 725–733.

DOI: 10.1016/j.memsci.2012.05.060

Google Scholar

[18] S. M. Momeni, M. Pakizeh, Preparation, characterization and gas permeation study of PSf/MgO nanocomposite membrane[J], Braz. J. Chem. Eng. 30 (2013) 589–597.

DOI: 10.1590/s0104-66322013000300016

Google Scholar

[19] Abhinav K. Nair, Arun M. Isloor, Rajesha Kumar, A.F. Ismail, Antifouling and performance enhancement of polysulfone ultrafiltration membranes using CaCO3 nanoparticles[J], Desalination. 322 (2013) 69–75.

DOI: 10.1016/j.desal.2013.04.031

Google Scholar

[20] S. S. Ozdemir, M. G. Buonomenna, E. Drioli, Catalytic polymeric membranes: Preparation and application[J], Appl. Catal. A-Gen. 307 (2006) 167-183.

DOI: 10.1016/j.apcata.2006.03.058

Google Scholar

[21] S. Long, A.Q. Zhang, H.F. Liu, L. Li, L.Q. Ding, Fabrication of a Pt Nano-cluster/Photosensitive Polyimide Hybrid Membrane Reactor and Its Partial Hydrogenation of Benzene[J], Chin. J. Catal., 30 (2009) 276–278.

DOI: 10.1016/s1872-2067(08)60100-x

Google Scholar

[22] H. Zhai, A.Q. Zhang, L. Li, S. Long, Partial Hydrogenation of Benzene Catalyzed by Pt/N- n -Propyl Chitosan Hybrid Membrane[J], J. Appl. Polym. Sci. 123 (2012) 2140–2146.

DOI: 10.1002/app.34720

Google Scholar

[23] A.Q. Zhang, M. Li, W. C. Ou, et al, Fabrication of a Ru nano-cluster/photosensitive polyimide hybrid membrane reactor and its partial hydrogenation of benzene[J], Chin. J. South-Central University Nationalities(Nat. Sci. Edition). 28(2) (2009).

DOI: 10.1016/s1872-2067(08)60100-x

Google Scholar

[24] S. H. Joo, J. Y. Park, J. R. Renzas, et al, Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation[J], Nano Letters. 10(7) (2010) 2709-2713.

DOI: 10.1021/nl101700j

Google Scholar

[25] H.F. Liu, H.J. Niu, J.G. Gao, Synthesis of polymer-stabilized ruthenium colloids by low boiling point alcohol reduction [J], Chinese. J. Polym. Sci. 21(1) (2003) 1-4.

Google Scholar

[26] J. B. Ning, J. Xu, J. Liu, et al, Selective hydrogenation of benzene to cyclohexene over colloidal ruthenium catalyst stabilized by silica[J], Catal. Lett. 109 (2006) 175.

DOI: 10.1007/s10562-006-0075-1

Google Scholar

[27] M. Amirilargani, E. Saljoughi, T. Mohammadi, Effects of Tween 80 concentration as a surfactant additive on morphology and permeability of flat sheet polyethersulfone (PES) membranes[J], Desalination. 249 (2009) 837–842.

DOI: 10.1016/j.desal.2009.01.041

Google Scholar

[28] J.N. Shen, H.M. Ruan, L.G. Wu, et al, Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment[J], Chem. Eng. J. 168 (2011) 1272–1278.

DOI: 10.1016/j.cej.2011.02.039

Google Scholar

[29] Xiao Y, Chung T S, Guan H M, et al. Synthesis, cross-linking and carbonization of co-polyimides containing internal acetylene units for gas separation[J], J. Membr. Sci. 2007 (302) 254-64.

DOI: 10.1016/j.memsci.2007.06.068

Google Scholar