[1]
Fillol C, Dor F, Denys S, et al. Arsenic urinary concentrations in children living in a naturally arsenic contaminated area[J]. JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY. 2013, 23(2): 145-150.
DOI: 10.1038/jes.2012.72
Google Scholar
[2]
Carrizales L, Razo I, Tellez-Hernandez J I, et al. Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children[J]. Environ Res. 2006, 101(1): 1-10.
DOI: 10.1016/j.envres.2005.07.010
Google Scholar
[3]
Zhang H, Luo Y, Makino T, et al. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust. [J]. Journal of hazardous materials. 2013, 248-249: 303-312.
DOI: 10.1016/j.jhazmat.2013.01.019
Google Scholar
[4]
Ramirez-Andreotta M D, Brusseau M L, Beamer P, et al. Home gardening near a mining site in an arsenic-endemic region of Arizona: Assessing arsenic exposure dose and risk via ingestion of home garden vegetables, soils, and water. [J]. The Science of the total environment. 2013, 454-455: 373-382.
DOI: 10.1016/j.scitotenv.2013.02.063
Google Scholar
[5]
Martinez-Sanchez M J, Martinez-Lopez S, Martinez-Martinez L B, et al. Importance of the oral arsenic bioaccessibility factor for characterising the risk associated with soil ingestion in a mining-influenced zone[J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT. 2013, 116: 10-17.
DOI: 10.1016/j.jenvman.2012.11.009
Google Scholar
[6]
Cao S, Duan X, Zhao X, et al. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China[J]. Sci Total Environ. 2014, 472: 1001-1009.
DOI: 10.1016/j.scitotenv.2013.11.124
Google Scholar
[7]
Cutler W G, Brewer R C, El-Kadi A, et al. Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii[J]. SCIENCE OF THE TOTAL ENVIRONMENT. 2013, 442: 177-188.
DOI: 10.1016/j.scitotenv.2012.09.081
Google Scholar
[8]
Glorennec P, Lucas J P, Mandin C, et al. French children's exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: Contamination data[J]. ENVIRONMENT INTERNATIONAL. 2012, 45: 129-134.
DOI: 10.1016/j.envint.2012.04.010
Google Scholar
[9]
Acosta J A, Faz C A, Arocena J M, et al. Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain)[J]. Geoderma (Amsterdam). 2009, 149(1-2): 101-109.
DOI: 10.1016/j.geoderma.2008.11.034
Google Scholar
[10]
Zhao H, Xia B, Fan C, et al. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China[J]. Sci Total Environ. 2012, 417-418: 45-54.
DOI: 10.1016/j.scitotenv.2011.12.047
Google Scholar
[11]
Das S, Jean J, Kar S. Bioaccessibility and health risk assessment of arsenic in arsenic-enriched soils, Central India. [J]. Ecotoxicology and environmental safety. 2013, 92.
DOI: 10.1016/j.ecoenv.2013.02.016
Google Scholar
[12]
Yang J K, Barnett M O, Jardine P M, et al. Adsorption, sequestration, and bioaccessibility of As(V) in soils[J]. Environ Sci Technol. 2002, 36(21): 4562-4569.
DOI: 10.1021/es011507s
Google Scholar
[13]
Reeder R J, Schoonen M A A, Lanzirotti A. Metal Speciation and Its Role in Bioaccessibility and Bioavailability[J]. Reviews in Mineralogy and Geochemistry. 2006, 64(1): 59-113.
DOI: 10.2138/rmg.2006.64.3
Google Scholar
[14]
Ruby M V, Lowney Y W. Selective Soil Particle Adherence to Hands: Implications for Understanding Oral Exposure to Soil Contaminants[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY. 2012, 46(23): 12759-12771.
DOI: 10.1021/es302473q
Google Scholar