Effects of Thiourea on Metals Availability and Maize Physiological Characteristics in Acid Soils from South China

Article Preview

Abstract:

It has been confirmed that thiourea (TU) was effective in inhibiting urea hydrolysis and nitrite formation. However, few studies focused on the toxicological effects and environmental impacts of TU. In this study, the influences of TU on the soil pH and available metals contents were reported. The addition of thiourea to the urea-treated soils led to a slower decrease or even increase in soil pH. The application of thiourea had slight influence on the content of available Cu in soils. Mn content increased with increasing TU concentration, however, the changes of Zn and Al contents were opposite. Pot culture experiments were conducted to investigate the effects of TU on the physiological characteristics of maize seedlings, including the plant growth, chlorophyll (CHL) content, metal ions uptakes and malondialdehyde (MAD) content in the leaves. 1 mmol kg-1 soil thiourea significantly inhibited the growth of maize seedlings. The application of thiourea enhanced the Mn accumulation in leaves, and negatively affected the Fe uptake, which thereby inhibited the biosynthesis of CHL. There was not any noticeable difference in MDA content in plants treated with 1-2.5 mmol kg-1 soil thiourea. An obvious increase of MDA content was found at 5 mmol kg-1 soil thiourea.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1073-1076)

Pages:

340-349

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Gioacchini, A. Nastri, C. Marzadori, C. Giovannini, L.V. Antisari, and C. Gessa: Biol. Fertil. Soils Vol. 36 (2002), p.129.

DOI: 10.1007/s00374-002-0521-1

Google Scholar

[2] A.R. Mosier, M.A. Bleken, P. Chaiwanakupt, E.C. Ellis, J.R. Freney, R.B. Howarth, P.A. Matson, K. Minami, R. Naylor, K.N. Weeks, and Z.L. Zhu: Biogeochem. Vol. 57 (2002), p.477.

DOI: 10.1023/a:1015798424363

Google Scholar

[3] M. Zaman, S. Saggar, J.D. Blennerhassett, and J. Singh: Soil Biol. Biochem. Vol. 41 (2009), p.1270.

Google Scholar

[4] M. Zaman, M.L. Nguyen, J.D. Blennerhassett, and B.F. Quin: Biol. Fertil. Soils. Vol. 44 (2008), p.693.

Google Scholar

[5] H.J. Di, K.C. Cameron, and R.R. Sherlock; Soil Use Manage Vol. 23 (2007), p.1.

Google Scholar

[6] X. Xu, L. Zhou, O. Van Cleemput, and Z. Wang: Plant Soil Vol. 220 (2000), p.261.

Google Scholar

[7] K.C. Sud and R.C. Sharma: J. the India Potato Association Vol. 19 (1992), p.139.

Google Scholar

[8] M.P. Sahu, N.S. Solanki , and L.N. Dashora: J. Agron. Crop Sci. Vol. 171 (1993), p.65.

Google Scholar

[9] J.T. Hays and D.J. Forbes: J. Agric. Food Chem. Vol. 22 (1974), p.468.

Google Scholar

[10] S.S. Malhi and M. Nyborg: Plant Soil Vol. 77 (1984), p.193.

Google Scholar

[11] F.P.J. Thormaehlen and C.C. Du Preez: S. Afr. J. Plant Soil Vol. 8 (1991), p.212.

Google Scholar

[12] M.P. Sahu and NS Solank: J. Agron. Crop. Sci. Vol. 167 (1991), p.356.

Google Scholar

[13] S.P. Cuttle, in: Environmental Impacts of Pasture-based Farming, edtied by R.W. McDowell CABI Publications, Wallingford, UK (2008), p.33.

Google Scholar

[14] M. O'Callaghan, E.M. Gerard, P.E. Carter, R. Lardner, U. Sarathchandra, G. Burch, A. Ghani, and N. Bell: Soil Biol. Biochem. Vol. 42 (2010), p.1425.

Google Scholar

[15] D.F. Edmeades: Environment Waikato Technical report 2004/22. ISSN: 1172-4005 (2004), p.17.

Google Scholar

[16] T.R. Guo, G.P. Zhang, and M.X. Zhou: Plant Soil, Vol. 258 (2004), p.241.

Google Scholar

[17] Q.M. Meng, J. Zou, J.H. Zou, W.S. Jiang, and D.H. Liu: Acta. Biol. Cracov. Bot. Vol. 49 (2007), p.95.

Google Scholar

[18] M.R. Carter, in: Soil sampling and methods of analysis, Canadian society of soil science. Lewis Publishers, Boca Raton, FL (1993).

Google Scholar

[19] A. Hegedüs, S. Erdei, and G. Horvàth: Plant Sci. Vol. 160 (2001), p.1085.

Google Scholar

[20] R.I. Heath and L. Paker: Arch. Biochem. Biophys. Vol. 125 (1968), p.189.

Google Scholar

[21] R.B. Ferguson, D.L. Kissel, J.K. Koelloker, and W. Basel: Soil Sci. Soc. Am. J. Vol. 48 (1984), p.578.

Google Scholar

[22] M.X. Fan and A.F. Mackenzie: Soil Sci. Soc. Am. J. Vol. 57 (1993), p.839.

Google Scholar

[23] K.J. McInnes and I.R.P. Fillery: Soil Sci. Soc. Am. J. Vol. 53 (1989), p.1264.

Google Scholar

[24] LM. Shuman, in: Chemical forms of micronutrients in soils, edtied by J.J. Mortvedt, Micronutrients in Agriculture, second ed. Book Series 4. SSSA, Madison, WI (1991), p.113.

DOI: 10.2136/sssabookser4.2ed.c5

Google Scholar

[25] X.D. Cao, Y. Chen, X.R. Wang, and X.H. Deng: Chemosphere Vol. 44 (2001), p.655.

Google Scholar

[26] X.Q. Shan, J. Lian, and B. Wen: Chemosphere Vol. 47 (2002), p.701.

Google Scholar

[27] I. Riba, E. García-Luque, J. Blasco, and T.A. DelValls: Chem. Spec. Bioavailab. Vol. 15 (2003), p.101.

Google Scholar

[28] A.W. Bekker, R.G. Chase, and N.V. Hue: Fertil. Res. Vol. 36 (1993), p.211.

Google Scholar

[29] S.S. Malhi, M. Nyborg, and J.T. Harapiak: Soil Till Res. Vol. 48 (1998), p.91.

Google Scholar

[30] L.G. Mitchell, C.A. Grant, and G.J. Racz: Can. J. Soil Sci. Vol. 80 (2000), p.107.

Google Scholar

[31] R.D. Yanai and D.M. Eissenstat: Adv. Ecol. Res. Vol. 27 (1997), p.1.

Google Scholar

[32] X.J. Xiong, M. Hirata, H. Takanashi, M. -G. Lee, and T. Hano: Journal of Fermentation and Bioengineering Vol. 86 (1998), p.207.

Google Scholar

[33] C. Poschenrieder and J. Barcelo´: Anal. Edafol. Agrobiol. Vol. 40 (1981), p.927.

Google Scholar

[34] Y.H. Dewir, D. Chakrabarty, M.B. Ali, E.J. Hahn, and K.Y. Paek: Environ. Exp. Bot. Vol. 58 (2006), p.93.

Google Scholar