Adsorption of Sulfur’s Atoms on the Outer Surface of Carbon Nanotubes

Article Preview

Abstract:

The article is about regularities of structure formation of carbon nanotubes (7,7) in their ground state in the process of the gradually increasing of the concentration of sulfur atoms. The fragment of nanotube is investigated within the framework of the density functional theory with the using of periodic boundary conditions. It contains 112 carbon atoms and n = 1 ÷ 9 sulfur atoms. It is shown that the most energetically favorable configurations of n = 1 ÷ 6 sulfur atoms can be considered as a configuration uncombined sulfur clusters Sn with the slight deformation by tube field. From n = 6, there is a tendency toward the formation of a ribbon structures with 2 sulfur atoms wide, it has a tendency in the moment of increasing n to be guided by transversely to the tube axis. In all considered cases the sulfur atoms are located at a distance from the surface of the tube more than 0.28 nm, it is excluded the possibility of the formation of the strong (covalent) chemical bonds with the carbon nanotube.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-29

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.V. Eletskii: Physics-Uspekhi Vol. 47, (2004), p.1119–1154.

Google Scholar

[2] M. Monthioux, Introduction to the Meta-Nanotube Book, In: Carbon Meta-Nanotubes: Synthesis, Properties and Applications, edited by M. Monthioux / John Wiley & Sons Ltd, 426 pp, (2012).

DOI: 10.1002/9781119954743.ch

Google Scholar

[3] L. Yuan, H. Yuan, X. Qiu, L. Chen, W. Zhu: Journal of Power Sources Vol. 189. (2009) p.1141–1146.

Google Scholar

[4] N. Demoncy, O. Stéphan, N. Brun, C. Colliex, A. Loiseau, H. Pascard: Eur. Phys. J. B. Vol. 4 (1998) p.147–157.

DOI: 10.1007/s100510050363

Google Scholar

[5] S.A. Sozykin, V.P. Beskachko: Molecular Physics Vol. 111 (2013) p.930–938.

Google Scholar

[6] S.A. Sozykin, V.P. Beskachko: Vestnik of the South Ural State University Vol. 34 (2012) p.182–185.

Google Scholar

[7] S.A. Sozykin, V.P. Beskachko: Vestnik of the South Ural State University Vol. 34 (2012) p.113–119.

Google Scholar

[8] G.I. Mironov, E.R. Filippova: Physics of the Solid State Vol. 54 (2012) pp.1709-1714.

Google Scholar

[9] E. Dujardin, T. W. Ebbesen, H. Hiura, K. Tanigaki: Science Vol. 265 (1994) p.1850–1852.

DOI: 10.1126/science.265.5180.1850

Google Scholar

[10] X. Lu, C. Sun, F. Li, H. -M. Cheng: Chemical Physics Letters Vol. 454 (2008) p.305–309.

Google Scholar

[11] A.I. Murzashev, E.O. Shadrin: Russian Physics Journal Vol. 56 (2013) pp.791-800.

Google Scholar

[12] M. Soler, E. Artacho, J.D. Gale, A. Garc, J. Junquera, P. Ordej, S. Daniel: J. Phys.: Condens. Matter. Vol. 14 (2002) p.2745–2779.

Google Scholar

[13] H.J. Monkhorst, J. Pack: 1976 Phys. Rev. B Vol. 13 (1976) p.5188.

Google Scholar

[14] B. M Smirnov, A.S. Yatsenko: Physics-Uspekhi Vol. 39 (1996) p.211.

Google Scholar

[15] M.C. McCarthy, S. Thorwirth, C.A. Gottlieb, P. Thaddeus: J. American Chemical Society Vol. 126 (2004) p.4096–4097.

Google Scholar

[16] K. Raghavachari, C.M. Rohlfing, J. S. Binkley: J. Chem. Phys. Vol. 8 (1990) p.5862–5874.

Google Scholar

[17] M.W. Wong: Topics in Current Chemistry Vol. 231 (2003) p.1–30.

Google Scholar