Fabrication of High-Aspect-Ratio Structural Change Microregions in Silicon Carbide by Femtosecond Bessel Beams

Article Preview

Abstract:

This letter presents the morphology of femtosecond Bessel beams induced high-aspect-ratio structural change regions in bulk silicon carbide. An axion is engaged in transforming Gaussians beams to Bessel beams, which are then focused on the surface or below the surface of the sample by combination of a plano-convex lens and a microscope objective. The sample is scanned by the focused femtosecond Bessel beams at the preset patterns. Through this method, the high-aspect-ratio uniform laser induced structure change regions have been produced and the highest respect ratio can reach 206 with the depth of 330 μm, the width of 1.6 μm in optimized conditions of appropriate focusing position and pulse energy. This result is attributed to uniform energy distribution in the long propagation distance of Bessel beams with nondiffracting. This technique will have great potential applications to make high-aspect-ratio microgrooves in wide-gap and transparent materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-147

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Y. Vorobyev and C. L. Guo, Colorizing metals with femtosecond laser pulses, Appl. Phys. Lett. 92, 041914(2008).

DOI: 10.1063/1.2834902

Google Scholar

[2] A. Borowiec and H. K. Haugen, Sub-wavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses, Appl. Phys. Lett. 82, 4462 (2003).

DOI: 10.1063/1.1586457

Google Scholar

[3] C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner and P. B. Corkum, Pulse duration dependence of femtosecond-laser-fabricated nano-gratings in fused silica, Appl. Phys. Lett. 87, 014104 (2005).

DOI: 10.1063/1.1991991

Google Scholar

[4] K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels, Appl. Phys. Lett. 94, 041123 (2009).

DOI: 10.1063/1.3076120

Google Scholar

[5] Y. Iga, T. Ishizuka, W. Watanabe, K. Itoh, Y. Li and J. Nishii, Characterization of micro-channels fabricated by in-water ablation of femtosecond laser pulses, Jpn. J. Appl. Phys. 43 4207 (2004).

DOI: 10.1143/jjap.43.4207

Google Scholar

[6] Q. Sun, A. Saliminia, F. Théberge, R. allée and S. Leang, Microchannel fabrication in silica glass by femtosecond laser pulses with different central wavelengths, J. Micromech. Microeng. 18, 035039 (2008).

DOI: 10.1088/0960-1317/18/3/035039

Google Scholar

[7] W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R, Dändliker, and N. Rooij, IEEE J. Sel. Top. Quantum Electron. 8, 148 (2002).

DOI: 10.1109/2944.991410

Google Scholar

[8] W. Ong, J. Kee, A. Ajay, N. Ranganathan, K. Tang, and L. Yobas, Buried microfluidic channel for integrated patch-clamping assay, Appl. Phys. Lett. 89(9), 093902 (2006).

DOI: 10.1063/1.2336213

Google Scholar

[9] Y. Ma, H. T. Shi, J. H. Si, H. Ren, T. Chen, F. Chen and X. Hou, High-aspect-ratio grooves fabricated in silicon by a single pass of femtosecond laser pulses, J. Appl. Phys. 111, 093102 (2012).

DOI: 10.1063/1.4709726

Google Scholar

[10] A. Pan, J .H. Si, T. Chen, Y. C. Ma, F. Chen, and X. Hou, Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching, Opt. Express 21, 16657 (2013).

DOI: 10.1364/oe.21.016657

Google Scholar

[11] Y. Ma, A. Pan, J. H. Si ,T. Chen, F. Chen, X. Hou, A simple method for fabrication of high-aspect-ratio all-silicon grooves, Appl. Surf. Sci. 284, 372 (2013).

DOI: 10.1016/j.apsusc.2013.07.107

Google Scholar

[12] D. J. Young, J. G. Du, C. A. Zorman, and H. K. Wen, High-temperature single-crystal 3C-SiC capacitive pressure sensor, IEEE Sens. J. 4, 464 (2004).

DOI: 10.1109/jsen.2004.830301

Google Scholar

[13] C. A. Zorman, S. Rajgopal, X. A. Fu, R. Jezeski, J. Melzak and M. Mehregany, Deposition of polycrystalline 3C-SiC films on 100 mm diameter Si (100) wafers in a large-volume LPCVD furnace, Electrochem. Solid-State Lett. 5, 10 (2002).

DOI: 10.1149/1.1506461

Google Scholar

[14] M. Östling, S. M. Koo, C. M. Zetterling, S. Khartsev, A. Grishin, Ferroelectric thin films on silicon carbide for next-generation nonvolatile memory and sensor devices, Thin solid films 469, 444 (2004).

DOI: 10.1016/j.tsf.2004.09.030

Google Scholar

[15] M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, High aspect ratio nanochannel machining using single shot femtosecond Bessel beams., Appl. Phys. Lett. 97, 081102 (2010).

DOI: 10.1063/1.3479419

Google Scholar

[16] M. K. Bhuyan, F. Courvoisier, H. S. Phing, Laser micro- and nanostructuring using femtosecond Bessel beams, Eur. Phys. J. Special Topics 199, 101 (2011).

DOI: 10.1140/epjst/e2011-01506-0

Google Scholar

[17] J. Durnin, J. J. Miceli, and J. H. Eberly, Holographic generation of diffraction-free beams, Phys. Rev. Lett. 58, 1499 (1987).

DOI: 10.1103/physrevlett.58.1499

Google Scholar

[18] F. Courvoisier, P. A. Lacourt, M. Jacquot, M. K. Bhuyan, Surface nanoprocessing with nondiffracting femtosecond Bessel beams., Opt. Lett. 34, 3163 (2009).

DOI: 10.1364/ol.34.003163

Google Scholar

[19] K. Vanthanh, Y. C. Ma, J. H. Si, T. Chen, F. Chen, X. Hou, Fabrication of Mmicro-grooves in silicon carbide using femtosecond laser irradiation and acid etching, Chin. Phys. Lett. 3, 037901 (2014).

DOI: 10.1088/0256-307x/31/3/037901

Google Scholar