[1]
Z. Y. Ou, S. D. Pang, Fundamental solutions to Hertzian contact problems at nanoscale. Acta Mech. 224 (2013) 109-121.
DOI: 10.1007/s00707-012-0731-z
Google Scholar
[2]
A. Verruijt, Deformations of an elastic half plane with a circular cavity. Int. J. Solids Struct. 35 (1998) 2795-2804.
DOI: 10.1016/s0020-7683(97)00194-7
Google Scholar
[3]
Z.Y. Ou, G.F. Wang, T. J. Wang, Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity. Int. J. Engine Res. 46 (2008) 475–485.
DOI: 10.1016/j.ijengsci.2007.12.008
Google Scholar
[4]
K. Amir, Miri, Effect of surface stress on the deformation of an elastic half-plane containing a nano-cylindrical hole under a surface loading. J. Compos. Tech. 8 (2011) 1-6.
DOI: 10.1166/jctn.2011.1683
Google Scholar
[5]
G. F. Wang, X. Q. Feng, Effects of surface stresses on contact problems at nanoscale. J. Appl. Phys. 101 (2007) 013510-013510-6.
DOI: 10.1063/1.2405127
Google Scholar
[6]
G. F. Wang, X. Q. Feng, Effects of the surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90 (2009) 231904-231904-3.
Google Scholar
[7]
M. E. Gurtin, A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. 78 (1998) 1093–1109.
DOI: 10.1080/01418619808239977
Google Scholar
[8]
V. B. Shenoy, Size-dependent rigidities of nanosized torsional elements. Int. J . Solids. Struct. 39 (2002) 4039-4052.
DOI: 10.1016/s0020-7683(02)00261-5
Google Scholar
[9]
M. Jammes, S. G. Mogilevskaya, S. L. Crouch, Multiple circular nano-inhomogeneities and/or nano-pores in one of two joined isotropic elastic half-planes. Eng. Anal. Bound. Elem. 32 (2009) 233–248.
DOI: 10.1016/j.enganabound.2008.03.010
Google Scholar
[10]
X. J. Zhao, Rajapakse, Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects. Int. J. Eng. Sci. 47 (2009) 1433–1444.
DOI: 10.1016/j.ijengsci.2008.12.013
Google Scholar