Morphological, Electrical and Optical Properties of Al-Doped Zinc Oxide Nanorods

Article Preview

Abstract:

We have studied the structural, electrical and optical properties of Al-doped Zinc Oxide (ZnO) nanostructures deposited on glass substrate by chemical bath deposition method. Scanning electrom microscope images clearly reveal that AZO nanorods were successfully grown. The XRD analysis indicates that polycrystalline nature of ZnO nanorods. The calculated grain size is about 84 nm. Electrical resistivity measurement study showes the minimum d.c. resistivity of 3.216×10-4 Ω.cm was obtained for the AZO films sintered at 300°C. It gives AZO can be adopted as a transparant conductive oxide (TCO) material. Optical transmission spectra showes that more than 80% transmission and 3.47 eV optical band gap of harvested AZO films. It is a potential candidate for ligth emitting diodes (LEDs), photonic crystals, TCO and photovoltaic application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-221

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.F. Chang, L. Wang, M.H. Hon, J. Cryst. Growth 211, 93 (2006).

Google Scholar

[2] R. Wang, L.L.H. King, W.W. Sleight, J. Mater. Res. 11, 1659, (1996).

Google Scholar

[3] M. Ritala, T. Asikanen,M. Leskelä, J. Skarp, Mater. Res. Soc. Symp. Proc. 426, 513, (1996).

Google Scholar

[4] J. Nishino, T. Kawarada, S. Ohisho, H. Saitoh, K. Maruyama, K. Kamata, J. Mater. Sci. Lett. 16, 629, (1997).

Google Scholar

[5] T. Minami, H. Nanto, S. Takata, Thin Solid Films, 24, 43 (1985).

Google Scholar

[6] S.Y. Myong, S.J. Baik et al., Jpn. J. Appl. Phys., 36, L1078 (1997).

Google Scholar

[7] M. Chen, Z. Pei et al., Mater. Res. Soc. Symp. Proc., 666, F 1. 2 (2001).

Google Scholar

[8] Yu ZG, Wu P, Gong H Appl Phys Lett 88: 132114 (2006).

Google Scholar

[9] J.H. Park, Applied Physics Letters, 89, 121108 (2006).

Google Scholar

[10] P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe and H. Takasu: J. Cryst. Growth, 214/215, 50, (2000).

DOI: 10.1016/s0022-0248(00)00057-9

Google Scholar

[11] Joseph B, Gopchandran KG, Manoj PK, Koshy P, Vaidyan VK, Bull Mater Sci, 22: 921–926, (1999).

DOI: 10.1007/bf02745554

Google Scholar

[12] J. J. Chen, M. H. Yu, and W. L. Zhou, Appl Phys Lett. 87, 173119 (2005).

Google Scholar

[13] Kuo, S.Y., Chen, W.C., Lai, F.I., Cheng, C.P., Kuo, H.C., Wang, S.C. & Hsieh, W.F., Journal of Crystal Growth 287(1): 78-84. (2006).

Google Scholar

[14] R.R. Kothawale, R.M. Mohite, IJAST, Issue: 1, vol: 5, p.633 (2012).

Google Scholar

[15] Kim, H. H.; Ogata, A.; Futamura, S., Appl. Catal. B-Environ., 79 (4), 356-367, (2008).

Google Scholar

[16] R.M. Mohite, R.R. Kothawale, ijsr, Vol. 3, Issue. 12, 355-358, (2014) Journal DOI : 10. 15373/22778179.

Google Scholar

[17] H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi and H. Uchiki, Appl. Phys. Lett. 76, (1905).

Google Scholar