Ethanol Vapour Sensing Property of Nitrogen Doped ZnO Fabricated by Spray Pyrolysis

Article Preview

Abstract:

In this paper, gas sensing property of a nitrogen doped ZnO was studied. nanofilms of pure and nitrogen-doped ZnO (0.1, 0.2 and 0.3 normality) were prepared on glass substrate by spray pyrolysis technique. These films were fired at 450°C for two hours in air atmosphere. nanobehavior of the films was confirmed by XRD and SEM analysis. Gas sensing behavior of the films was tested in static gas sensing system. Films were exposed to different gases as LPG.NH3, NO2, Ethanol vapour and CO2 at different ppm concentrations and different operating temperatures. Pure ZnO films showed poor sensing behavior. At 150°C, films of N-doped ZnO (0.3 normality) showed good sensing for Ethanol vapours. The gas sensitivity was determined as 86.8% for 200 ppm of Ethanol vapours. When compared with pure ZnO, the nitrogen doped ZnO films possessed more oxygen deficient species. Due to this crystal defects arising from nitrogen doping, the improvement in gas sensing property of ZnO may be argued. Keywords: Spray pyrolysis; ZnO; N; XRD; SEM; LPG

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-234

Citation:

Online since:

June 2015

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Karlsson and A. Roos , Optical properties and spectral selectivity of copper oxide on stainless steel, Solar Energy Materials 10 (1984) 105-119.

DOI: 10.1016/0165-1633(84)90012-1

Google Scholar

[2] H. Derin and K. Kantarli, Optical characterization of thin thermal oxide films on copper by ellipsometry, Appl. Phys A 75 391-395.

DOI: 10.1007/s003390100989

Google Scholar

[3] Guoyang Xu, Zhifu Liu, Jing Ma, Boyang Liu, Seng-Tiong Ho, Lian Wang, Peiwang Zhu, Tobin Marks, Jingdong Luo, and Alex Jen , Organic electro-optic modulator using transparent conducting oxides as electrodes, Optics Express 13 (2005) 7380-7385.

DOI: 10.1364/opex.13.007380

Google Scholar

[4] Robert F. Service, Will UV Lasers Beat the Blues, Science 276 (1997) 895-898.

Google Scholar

[5] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao1, S. Koyama, M. Y. Shen, and T. Goto, Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett. 70 (1997) 2230-2232.

DOI: 10.1063/1.118824

Google Scholar

[6] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, and W.C., Harsch , Electrical properties of bulk ZnO, Solid State Communications 105 (1998) 399-401.

DOI: 10.1016/s0038-1098(97)10145-4

Google Scholar

[7] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Appl. Phys. Lett. 72 (1998) 3270-3371.

DOI: 10.1063/1.121620

Google Scholar

[8] Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, and H. W. White, Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition J. Appl. Phys. 88 (2000) 201-204.

DOI: 10.1063/1.373643

Google Scholar

[9] R.A. Michaels, Emergency planning and the Acute toxic potency of inhaled Ammonia, Environ. Health Perspat 107 (1999) 617-627.

DOI: 10.1289/ehp.99107617

Google Scholar

[10] L.G. Close, F.I. Catlin, A.M. Cohn, Acute and chronic effects of ammonia burns on the respiratory track, Arch. Otolaryngol. 106 (1980) 151-158.

Google Scholar

[11] R.F. Dasmann, Environmental Conservation, fourth ed., John Wiley and Sons Inc., New York (1976).

Google Scholar

[12] W.B. Durhan, Detection of toxic and hazardous gases, in: sax, N.I. (Ed. ), Industrial Pollution. Van Nostrand Rein hold co., New York, 1974, pp.10-35.

Google Scholar

[13] D.F. Shriver P.W. Atkins, Inorganic Chemistry, third ed., Oxford University Press, (2004).

Google Scholar

[14] N. Yamozoe, Y. Kurokawa,T. Seiyana, Catalytic Sensitization of SnO2 Sensor, Sensors and Actuators B 4 (1983) 283-289.

Google Scholar

[15] S, Matsushima, Y. Teraoka, N. Miura, N. Yamozoe, Silver clusters on SnO2 thin film surfaces and their applications, Jpn.J. Appl. Phys. 27 (1988) 1798-1802.

Google Scholar

[16] J.G. Duh, J.W. Jou, B.S. Chiou , Catalytic and gas sensing characteristics in Pd doped SnO2, Electrochem. Soc. 136 (1989) 2740-2747.

DOI: 10.1149/1.2097581

Google Scholar

[17] S. Basu,A. Dutta, Sensor parameters for Pd/ZnO/p-Si device at room temperature, Materials Chemistry and Physics 47 (1997) 93-96.

Google Scholar

[18] K. Okuyama , I.W. Lenggoro, Preparation of Nanoparticles via Spray Route, Chem. Eng. Sci. 58(2003) 537-547.

DOI: 10.1016/s0009-2509(02)00578-x

Google Scholar

[19] B.D. Cullity, Elements of X-ray diffraction, second Edition, Addison Wesley, Boston, (1978).

Google Scholar

[20] O. Lupan, L. Chow, S. Shishiyanu, E. Monaico, T. Shishiyanu, V. S. Ontea, B. Roldan Cuenya, A. Naitabdi, S. Park, A. Schulte, Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications, Materials Research Bulletin, 44 (2009).

DOI: 10.1016/j.materresbull.2008.04.006

Google Scholar

[21] H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publishing, Bristol, (1995).

Google Scholar

[22] P.P. Sahay, Zinc oxide thin film gas sensor for detection of acetone, J. Mater. Sci. 40 (2005) 4383-4385.

DOI: 10.1007/s10853-005-0738-0

Google Scholar

[23] J. Mizsei, Hoe can sensitive and selective semiconductor gas sensors be made? Sensors and Actuators B 23 (1995) 173-176.

DOI: 10.1016/0925-4005(94)01269-n

Google Scholar