The Optical and Electrical Properties of Al and (Al, Cu) Doped ZnO Film

Article Preview

Abstract:

The optical and electric transport properties of the Al:ZnO(AZO) and (Cu, Al):ZnO (CAZO) films deposited by pulsed laser deposition (PLD) were investigated in this paper. The experiment found the optical band gap (OBG) of AZO films at room temperature increased from 3.378eV of ZnO to 3.446eV of ZnO:Al (2min) sample, but decreased as continue add Al to ZnO:Al (4min), which were attributes to the Burstein-Moss (B-M) effect. For CAZO films, there is obvious change about hall mobility, ν, and resistivity, ρ, after doped Cu. It can be found that the ν decreased from to and the ρ increased from to for AZO and CAZO, respectively, which is due to the scattering increasing between donor carriers and grain boundary as Cu2+ ions increase, meanwhile, it was also found the decrease of OBG, which are very help to further understand the electric transport properties and the OBG effect of AZO-based films as well as its devices potential application.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

429-434

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kim, J. S. Horwitz, S. B. Qadri, D. B. Chrisey, Thin Solid films 420-421(2002) 107-111.

DOI: 10.1016/s0040-6090(02)00658-2

Google Scholar

[2] J. Hu, R.G. Gordon, J. Appl. Phys. 71 (1992) 880.

Google Scholar

[3] T. Minami, Semicond. Sci. Technol. 20, (2005) s35.

Google Scholar

[4] L. Schmidt-Mende and J. L. MacManus-Driscoll, Matter. Today , 10(2007) 40.

Google Scholar

[5] C. Jeong, H. -S. Kim, D. –R. Chang, and K. Kamisako, Jpn. J. Appl. Phys., 47 (2008)5656.

Google Scholar

[6] C. Agashe, O. Kluth, J. Hüpkes, U. Zastow, B. Rech, and M. Wuttig, J. Appl> Phys. 95, (2004) (1911).

Google Scholar

[7] K. Kom, K. Park, and D. Ma, J. Appl. Phys. 81, (1997) 7764.

Google Scholar

[8] J.G. Lu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, L. Wang, J. Yuan, B. H. Zhao, and Q. L. Liang, J. Appl. Phys. 100, (2006) 073714.

Google Scholar

[9] M. Hiramatsu, K. Imaeda, N. Horio, M. Nawata, J. Vac. Sci. Technol. A 16 (1998) 669.

Google Scholar

[10] H. Kim, C.M. Gilmore, J.S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, D. B. Chrisey, Appl. Phys. Lett. 76 (2000) 259.

DOI: 10.1063/1.125740

Google Scholar

[11] Y. Gassenbauer, R. Schafranek, A. Klein, S. Zafeiratos, M. Hävecker, A. Knop-Gericke, and R. Schlögl, Phys. Rev. B 73, (2006) 245312.

Google Scholar

[12] B. E. Sernelius, K. -F. Berggren, Z. -C. Jin, I. hamberg, and C. G. Granqvist, Phys. Rev. B 37, (1988) 10244.

Google Scholar

[13] Y. Kim, W. Lee, D. -R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, Appl. Phys. Lett. 96, (2010) 171902.

Google Scholar

[14] S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang, W. F. Hsieh, J. Cryst. Growth 287 (2006) 78-84.

Google Scholar

[15] Y. Igasaki, H. Saito, Thin Sol. Films 1991, 199(2): 223–230.

Google Scholar

[16] A.P. Roth, J.B. Webb, D.F. Williams, Sol. St. Comm. 1981 39(12): 1269–1271.

Google Scholar