Observation of Substrate Silicon Incorporation into Thin Lanthanum Oxide Film during Rapid Thermal Annealing

Article Preview

Abstract:

Lanthanum oxide (La2O3) has been proposed as the promising gate dielectric material for future complementary metal-oxide-semiconductor (CMOS) technology. However, unlike the conventional homopolar materials such as silicon oxide or silicon nitride, La2O3 is more ionic and in particular at the La2O3/Si interface is less thermally stable. This work investigates the chemical and compositional variations of La2O3 thin film on the silicon substrate during rapid thermal annealing by using angle-resolved x-ray photoelectron spectroscopy (ARXPS) measurements. Results show that thermal annealing at temperatures above 500 °C would result in the incorporation of substrate Si atoms deep into the bulk of the La2O3 film and forming silicate phases both at the interface and in the bulk. These effects would result in the characteristic degradation of CMOS devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

414-418

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Wong, Nano-CMOS Gate Dielectric Engineering, CRC Press, Boca Raton, (2012).

Google Scholar

[2] H. Wong and H. Iwai, On the scaling of subnanometer EOT gate dielectrics for ultimate nano CMOS technology, Microelectron. Engineer., 138 (2015) 57-76.

DOI: 10.1016/j.mee.2015.02.023

Google Scholar

[3] H. Yamada, T, Shimizu, A. Kurokawa, K. Ishii, and E. Suzuki, MOCVD of high-dielectric-constant lanthanum oxide thin films, J. Electrochem. Soc. 150 (2003) G429-G435.

DOI: 10.1149/1.1585055

Google Scholar

[4] K. Kakushima, K. Tachi, P. Ahmet, K. Tsutsui, N. Sygii, and T. Hattori, Advantage of further scaling in gate dielectric below 0. 5 nm of equivalent oxide thickness with La2O3 gate dielectrics, Microelectron. Reliab., 50 (2010) 790-793.

DOI: 10.1016/j.microrel.2010.02.001

Google Scholar

[5] D. J. Lichtenwalner, J. S. Jur, A. I. Kingon, M. P. Agustin, Y. Yang, S. Stemmer, L. V. Goncharova, T. Gustafsson, and  E. Garfunkel, Lanthanum silicate gate dielectric stacks with subnanometer equivalent oxide thickness utilizing an interfacial silica consumption reaction, J. Appl. Phys., 98, (2005).

DOI: 10.1063/1.1988967

Google Scholar

[6] H. Yamada, T. Shimizu and E. Suzuki, Interface reaction of a silicon substrate and lanthanum oxide films deposited by metalorganic chemical vapor deposition, Jpn. J. App. Phys., 41 (2002) L368-370.

DOI: 10.1143/jjap.41.l368

Google Scholar

[7] H. Wong, H. Iwai, K. Kakushima, B. L. Yang, and P. K. Chu, XPS study of the bonding properties of lanthanum oxide/silicon interface with a trace amount of nitrogen incorporation, J. Electrochemical Soc., 157 (2010) G49-G52.

DOI: 10.1149/1.3268128

Google Scholar

[8] Database of electron inelastic mean free path for elemental solids. Available at: http: /www. nims. go. jp/research/organization/hdfqf1000000isjt-att/hdfqf1000000ispa. pdf.

Google Scholar

[9] S. Inamoto, J. Yamasaki, E. Okunishi, K. Kakushima, H. Iwai, and N. Tanaka, Annealing effects on a high-k lanthanum oxide film on Si (001) analyzed by aberration-corrected transmission electron microscopy/scanning transmission electron microscopy and electron energy loss spectroscopy, J. Appl. Phys., 107 (2010).

DOI: 10.1063/1.3445874

Google Scholar

[10] H. Nohira, A. Komatsu, K. Yamashita, K. Kakushima, H. Iwai, Y. Hoshi, and Y. Shiraki, XPS study on chemical bonding states of high-κ/high-μ gate stacks for advanced CMOS, J. Electrochemical Soc., 41 (2011) 137-146.

DOI: 10.1149/1.3633293

Google Scholar