[1]
H. Abdoos, H. Khorsand, A.R. Shahani., Fatigue behavior of diffusion bonded metallurgy steel with heterogeneous microstructure, Materials and Design 30, (2009) 1026-1031.
DOI: 10.1016/j.matdes.2008.06.050
Google Scholar
[2]
C. Kanchanomai, V. Phiphobmongkol, P. Muanjan, Fatigue failure of an orthopedic implant-A locking compression plate, Engineering Failure Analysis 15, (2008), 521-530.
DOI: 10.1016/j.engfailanal.2007.04.001
Google Scholar
[3]
C. Leinenbach, D. Ejfler, Fatigue and cyclic deformation behavior of surface-modified titanium alloys in simulated physiological media, Biomaterials 27, (2006), 1200-1208.
DOI: 10.1016/j.biomaterials.2005.08.012
Google Scholar
[4]
F.J. Gil, J.A. Planell, A. Padros, C. Aparicio, The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications. Dental Materials 23, (2007), 486-491.
DOI: 10.1016/j.dental.2006.03.003
Google Scholar
[5]
B.A. James, R.A. Sire, Fatigue-life assessment and validation techniques for vascular implants. Biomaterials 31, (2010)181-185.
DOI: 10.1016/j.biomaterials.2009.10.028
Google Scholar
[6]
M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J. W Hutchinson, H.N.G. Wadley (2000) Metal Foam : A Design Guide. Butterworth Heinermamm press.
Google Scholar
[7]
G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopedics applications, Biomaterials. 27, (2010) 2651-2670.
DOI: 10.1016/j.biomaterials.2005.12.002
Google Scholar
[8]
V.K. Balla, S. Bodhak, S. Bose, A. Bandyopadhyay, Low stiffness porous Ti Structure for load bearing implants, Acta Biomaterialia 2, (2007) 997-1006.
DOI: 10.1016/j.actbio.2007.03.008
Google Scholar
[9]
V.K. Balla, S. Bodhak , S. Bose, A. Bandyopadhyay , Porous tantalum structures for bone implants: Fabrication, mechanical & in vitro biological properties, Acta Biomaterialia 6 (2010) 3349-3359.
DOI: 10.1016/j.actbio.2010.01.046
Google Scholar
[10]
J. Parthasarathy, B. Starly, S. Raman, A. Christensen , Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Journal of the Mechanical behavior of biomedical materials 3 (2010) 249-259.
DOI: 10.1016/j.jmbbm.2009.10.006
Google Scholar
[11]
S.M. Ahmadi, G. Campoli, S.A. Yavari, B. Sajadi, R. Wauthle, J. Schrooten, H. Weinans , .A. , Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. Journal of Mechanical behavior of biomedical material. 34 (2014).
DOI: 10.1016/j.jmbbm.2014.02.003
Google Scholar
[12]
J. Banhart , W. Brinkers Where Fatigue behavior of aluminium foams, Journal of materials science letters. 18, (1999), 617-619.
Google Scholar
[13]
S. Kashef , A. Asgari , T.B. Hildtch TB, Yan W, Goel VK, Hodgson, PD Fatigue crack growth behavior of titanium foam for medical applications. Materials science and Engineering A. A528, (2010)1602-1607.
DOI: 10.1016/j.msea.2010.11.024
Google Scholar
[14]
A.M. Harte, Fleck NA, Ashby , Fatigue failure of an open cell and closed cell aluminium alloy foam. Acta matter 47(8), 2511-2524.
DOI: 10.1016/s1359-6454(99)00097-x
Google Scholar
[15]
ISO 3928: 1999. Sintered metal materials excluding hard metals-Fatigue test pieces.
Google Scholar