[1]
M. Mohammadi, S. Javadpour, S.A.J. Jahromi, K. Shirvani, A. Kobayashi, Characterization and hot corrosion performance of LVPS and HVOF-CoNiCrAlYSi coatings, Vacuum, 86 (2012) 1458-1464.
DOI: 10.1016/j.vacuum.2012.02.030
Google Scholar
[2]
K. Tao, X. Zhou, H. Cui, and J. Zhang, Microhardness Variation in Heat-Treated Conventional and Nanostructured NiCrC Coatings Prepared by HVAF Spraying, Surf. Coat. Technol., 203 (2009) 1406-1414.
DOI: 10.1016/j.surfcoat.2008.11.020
Google Scholar
[3]
O. Xue-mei, S. Zhi, S. Min, and Z. Duan-lian, Hot-Corrosion Mechanism of Ni-Cr Coatings at 650 °C Under Different Simulated Corrosion Conditions, J. China Univ. Min. Technol., 18 (2008) 0444-0448.
DOI: 10.1016/s1006-1266(08)60092-9
Google Scholar
[4]
B.S. Sidhu and S. Prakash, Nickel-Chromium Plasma Spray Coatings: A Way to Enhance Degradation Resistance of Boiler Tube Steels in Boiler Environment, J. Therm. Spray Technol., 15 (2006) 131-140.
DOI: 10.1361/105996306x92695
Google Scholar
[5]
B.S. Sidhu and S. Prakash, Evaluation of the Behavior of Shrouded Plasma Spray Coatings in the Platen Superheater of Coal-Fired Boilers, Metall. Mater. Trans. A, 37A (2006) 1927-(1936).
DOI: 10.1007/s11661-006-0135-6
Google Scholar
[6]
V.H. Hidalgo, F.J.B. Varela, A.C. Menendez, and S.P. Martınez, A Comparative Study of High-temperature Erosion Wear of Plasma-Sprayed NiCrBSiFe and WC-NiCrBSiFe Coatings Under Simulated Coal-Fired Boiler Conditions, Tribol. Int., 34 (2001).
DOI: 10.1016/s0301-679x(00)00146-8
Google Scholar
[7]
A. Shibli and F. Starr, Some Aspects of Plant and Research Experience in the Use of New High Strength Martensitic Steel P91, Int. J. Press. Vessel Pip., 84 (2007) 114-122.
DOI: 10.1016/j.ijpvp.2006.11.002
Google Scholar
[8]
M. Torrell, S. Dosta, J.R. Miguel, and J.M. Guilemany, Optimisation of HVOF Thermal Spray Coatings for Their Implementation as MSWI, Superheater Protectors, Corros. Eng. Sci. Technol., 45 (2010) 84-93.
DOI: 10.1179/147842209x12601838533508
Google Scholar
[9]
Niraj Bala , Harpreet Singh , Satya Prakash, High-temperature oxidation studies of cold-sprayed Ni–20Cr and Ni–50Cr coatings on SAE 213-T22 boiler steel, Appl. Surf. Sci., 255 (2009) 6862–6869.
DOI: 10.1016/j.apsusc.2009.03.006
Google Scholar
[10]
T. Sundararajan, S. Kuroda, F. Abe, Steam oxidation resistance of two-layered Ni–Cr and Al APS coating for USC boiler applications, Corros. Sci., 47 (2005) 1129-1147.
DOI: 10.1016/j.corsci.2004.06.023
Google Scholar
[11]
H.S. Sidhu, B.S. Sidhu, S. Prakash, and S. Prakash, Mechanical and Microstructural Properties of HVOF Sprayed WC-Co and Cr3C2-NiCr Coatings on the Boiler Tube Steels Using LPG as the Fuel Gas, J. Mater. Process. Technol., 171 (2006) 77-82.
DOI: 10.1016/j.jmatprotec.2005.06.058
Google Scholar
[12]
W. Tillmann, E. Vogli, I. Baumann, G. Kopp, and C. Weihs, Desirability-Based Multi-Criteria Optimization of HVOF Spray Experiments to Manufacture Fine Structured Wear-Resistant 75Cr3C2-25(NiCr20) Coatings, J. Therm. Spray Technol., 19 (2010).
DOI: 10.1007/s11666-009-9383-5
Google Scholar
[13]
J.M. Guilemany, J. Fernandez, J. Delgado, A.V. Benedetti, and F. Climent, Effects of Thickness Coatings on the Electrochemical Behavior of Thermal Spray Cr3C2-NiCr Coatings, Surf. Coat. Technol., 153 (2002) 107-113.
DOI: 10.1016/s0257-8972(01)01679-6
Google Scholar
[14]
E. Lugscheider, C. Herbst, and L. Zhao, Parameter Studies on High-Velocity Oxy-Fuel Spraying of MCrA1Y Coatings, Surf. Coat. Techno., 108-109 (1998) 16-23.
DOI: 10.1016/s0257-8972(98)00630-6
Google Scholar
[15]
T.S. Sidhu, S. Prakash, and R.D. Agrawal, Studies of the Metallurgical and Mechanical Properties of High Velocity Oxy-Fuel Sprayed Stellite-6 Coatings on Ni- and Fe-Based Superalloys, Surf. Coat. Technol., 201 (2006) 273-281.
DOI: 10.1016/j.surfcoat.2005.11.108
Google Scholar
[16]
S. Matthews, M. Hyland and B. James, Microhardness variation in relation to carbide development in heat treated Cr3C2–NiCr thermal spray coatings, Acta Materialia, 51 (2003) 4267-4277.
DOI: 10.1016/s1359-6454(03)00254-4
Google Scholar
[17]
Subhash Kamal, R. Jayaganthan, S. Prakash and Sanjay Kumar, Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 ◦C, J. Alloys Compd., 463 (2008) 358-372.
DOI: 10.1016/j.jallcom.2007.09.019
Google Scholar
[18]
S. Matthews, B. James, and M. Hyland, The Effect of Heat Treatment on the Oxidation Mechanism of Blended Powder Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 19 (2010) 119-127.
DOI: 10.1007/s11666-009-9381-7
Google Scholar
[19]
J.M. Guilemany, J.M. Miguel, S. Vizcaino, C. Lorenzana, J. Delgado and J. Sanchez, Role of heat treatments in the improvement of the sliding wear properties of Cr3C2–NiCr coatings, Surf. Coat. Technol., 157 (2002) 207–213.
DOI: 10.1016/s0257-8972(02)00148-2
Google Scholar
[20]
S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, High-Temperature Behavior of a NiCr-Coated T91 Boiler Steel in the Platen Superheater of Coal-Fired Boiler, J. Therm. Spray Technol., 22 (2013) 838-847.
DOI: 10.1007/s11666-013-9899-6
Google Scholar
[21]
S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, High Temperature Hot Corrosion Behaviour of NiCr and Cr3C2-NiCr Coatings on T91 Boiler Steel in an Aggressive Environment at 750 °C, Surf. Coat. Technol., 206 (2012) 3839-3850.
DOI: 10.1016/j.surfcoat.2012.01.060
Google Scholar
[22]
M.A. Uusitalo, P.M.J. Vuoristo, and T.A. Mantyla, High Temperature Corrosion of Coatings and Boiler Steels Below Chlorine-Containing Salt Deposits, Corros. Sci., 46 (2004) 1311-1331.
DOI: 10.1016/j.corsci.2003.09.026
Google Scholar
[23]
P.H. Suegama, C.S. Fugivara, A.V. Benedetti, J. Fernandez, J. Delgado, J.M. Guilemany, Electrochemical behaviour of thermally sprayed Cr3C2–NiCr coatings in 0. 5 M H2SO4 media, J. Appl. Electrochem., 32 (2002) 1287-1295.
DOI: 10.1016/j.electacta.2003.09.017
Google Scholar
[24]
Manpreet Kaur, Harpreet Singh, Satya Prakash, Surface engineering analysis of detonation-gun sprayed Cr3C2–NiCr coating under high-temperature oxidation and oxidation–erosion environments, Surf. Coat. Technol., 206 (2011) 530-541.
DOI: 10.1016/j.surfcoat.2011.07.077
Google Scholar
[25]
D. Das, R. Balasubramaniam, and M.N. Mungole, Hot Corrosion of Carbon-Alloyed Fe3Al-Based Iron Aluminides, Mater. Sci. Eng. A, 338 (2002) 24-32.
DOI: 10.1016/s0921-5093(02)00072-2
Google Scholar
[26]
S. Srikanth, B. Ravikumar, S.K. Das, K. Gopalakrishna, K. Nandakumar, and P. Vijayan, Analysis of Failures in Boiler Tubes Due to Fireside Corrosion in a Waste Heat Recovery Boiler, Eng. Fail. Anal., 10 (2003) 59-66.
DOI: 10.1016/s1350-6307(02)00030-4
Google Scholar
[27]
A. Ul-Hamid, Diverse Scaling Behavior of the Ni-20Cr Alloy, Mater. Chem. Phys., 80 (2003) 135-142.
DOI: 10.1016/s0254-0584(02)00448-0
Google Scholar
[28]
S. Sundararajan, S. Kuroda, K. Nishida, T. Itagaki, and F. Abe, Behaviour of Mn and Si in the Spray Powders During Steam Oxidation of Ni-Cr Thermal Spray Coatings, ISIJ Int., 44 (2004) 139-144.
DOI: 10.2355/isijinternational.44.139
Google Scholar
[29]
S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar, Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2-25%NiCr coatings on nickel- and iron-based superalloys, Surf. Coat. Technol., 203 (2009) 1004-1013.
DOI: 10.1016/j.surfcoat.2008.09.031
Google Scholar
[30]
N. Bala, H. Singh, and S. Prakash, High Temperature Oxidation Studies of Cold Sprayed Ni-20Cr and Ni-50Cr Coatings on SAE 213-T22 Boiler Steel, Appl. Surf. Sci., 2009, 255, pp.6862-6869.
DOI: 10.1016/j.apsusc.2009.03.006
Google Scholar
[31]
M. Seiersten, and P. Kofstad, The Effect of SO3 on Vanadate-Induced Hot Corrosion, High Temp. Technol., 5 (1987) 115-122.
DOI: 10.1080/02619180.1987.11753353
Google Scholar
[32]
D. Saxena, Effect of Zr and Y Addition on High Temperature Sulphidation Behaviour of Fe-15Cr-4Al, Ph.D. Thesis, Met. Mat. Engg. Dept., University of Roorkee, Roorkee, India, (1986).
Google Scholar
[33]
F.H. Stott, F.I. Wei, C.A. Enahoro, The influence of manganese on the High-temperature oxidation of iron-chromium alloys, Mater. Corros., 40 (1989) 198-205.
DOI: 10.1002/maco.19890400403
Google Scholar
[34]
M.F. Stroosnijder, R. Mevrel, M.J. Bennet, The Interaction of Surface Engineering and High Temperature Corrosion Protection, Mater. High Temp., (1994) 53-66.
Google Scholar