Performance of 75Cr3C2-25NiCr Coating Produced by HVOF Process in a Coal-Fired Thermal Power Plant

Article Preview

Abstract:

In the present investigation, 75Cr3C2-25NiCr coating was deposited on T91 boiler tube steel substrate by high velocity oxy-fuel (HVOF) process to enhance high-temperature corrosion resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under cyclic conditions in the platen superheater zone coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles each of 100 h duration followed by 1 h cooling at ambient temperature. The performance of the bare and coated specimens was assessed via metal thickness loss corresponding to the corrosion scale formation and the depth of internal corrosion attack. The uncoated boiler steel suffered from a catastrophic degradation in the form of internal oxidation attack and thickness loss. The 75Cr3C2-25NiCr coating showed good adherence to the boiler steel during the exposures with no tendency for internal oxidation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-100

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Mohammadi, S. Javadpour, S.A.J. Jahromi, K. Shirvani, A. Kobayashi, Characterization and hot corrosion performance of LVPS and HVOF-CoNiCrAlYSi coatings, Vacuum, 86 (2012) 1458-1464.

DOI: 10.1016/j.vacuum.2012.02.030

Google Scholar

[2] K. Tao, X. Zhou, H. Cui, and J. Zhang, Microhardness Variation in Heat-Treated Conventional and Nanostructured NiCrC Coatings Prepared by HVAF Spraying, Surf. Coat. Technol., 203 (2009) 1406-1414.

DOI: 10.1016/j.surfcoat.2008.11.020

Google Scholar

[3] O. Xue-mei, S. Zhi, S. Min, and Z. Duan-lian, Hot-Corrosion Mechanism of Ni-Cr Coatings at 650 °C Under Different Simulated Corrosion Conditions, J. China Univ. Min. Technol., 18 (2008) 0444-0448.

DOI: 10.1016/s1006-1266(08)60092-9

Google Scholar

[4] B.S. Sidhu and S. Prakash, Nickel-Chromium Plasma Spray Coatings: A Way to Enhance Degradation Resistance of Boiler Tube Steels in Boiler Environment, J. Therm. Spray Technol., 15 (2006) 131-140.

DOI: 10.1361/105996306x92695

Google Scholar

[5] B.S. Sidhu and S. Prakash, Evaluation of the Behavior of Shrouded Plasma Spray Coatings in the Platen Superheater of Coal-Fired Boilers, Metall. Mater. Trans. A, 37A (2006) 1927-(1936).

DOI: 10.1007/s11661-006-0135-6

Google Scholar

[6] V.H. Hidalgo, F.J.B. Varela, A.C. Menendez, and S.P. Martınez, A Comparative Study of High-temperature Erosion Wear of Plasma-Sprayed NiCrBSiFe and WC-NiCrBSiFe Coatings Under Simulated Coal-Fired Boiler Conditions, Tribol. Int., 34 (2001).

DOI: 10.1016/s0301-679x(00)00146-8

Google Scholar

[7] A. Shibli and F. Starr, Some Aspects of Plant and Research Experience in the Use of New High Strength Martensitic Steel P91, Int. J. Press. Vessel Pip., 84 (2007) 114-122.

DOI: 10.1016/j.ijpvp.2006.11.002

Google Scholar

[8] M. Torrell, S. Dosta, J.R. Miguel, and J.M. Guilemany, Optimisation of HVOF Thermal Spray Coatings for Their Implementation as MSWI, Superheater Protectors, Corros. Eng. Sci. Technol., 45 (2010) 84-93.

DOI: 10.1179/147842209x12601838533508

Google Scholar

[9] Niraj Bala , Harpreet Singh , Satya Prakash, High-temperature oxidation studies of cold-sprayed Ni–20Cr and Ni–50Cr coatings on SAE 213-T22 boiler steel, Appl. Surf. Sci., 255 (2009) 6862–6869.

DOI: 10.1016/j.apsusc.2009.03.006

Google Scholar

[10] T. Sundararajan, S. Kuroda, F. Abe, Steam oxidation resistance of two-layered Ni–Cr and Al APS coating for USC boiler applications, Corros. Sci., 47 (2005) 1129-1147.

DOI: 10.1016/j.corsci.2004.06.023

Google Scholar

[11] H.S. Sidhu, B.S. Sidhu, S. Prakash, and S. Prakash, Mechanical and Microstructural Properties of HVOF Sprayed WC-Co and Cr3C2-NiCr Coatings on the Boiler Tube Steels Using LPG as the Fuel Gas, J. Mater. Process. Technol., 171 (2006) 77-82.

DOI: 10.1016/j.jmatprotec.2005.06.058

Google Scholar

[12] W. Tillmann, E. Vogli, I. Baumann, G. Kopp, and C. Weihs, Desirability-Based Multi-Criteria Optimization of HVOF Spray Experiments to Manufacture Fine Structured Wear-Resistant 75Cr3C2-25(NiCr20) Coatings, J. Therm. Spray Technol., 19 (2010).

DOI: 10.1007/s11666-009-9383-5

Google Scholar

[13] J.M. Guilemany, J. Fernandez, J. Delgado, A.V. Benedetti, and F. Climent, Effects of Thickness Coatings on the Electrochemical Behavior of Thermal Spray Cr3C2-NiCr Coatings, Surf. Coat. Technol., 153 (2002) 107-113.

DOI: 10.1016/s0257-8972(01)01679-6

Google Scholar

[14] E. Lugscheider, C. Herbst, and L. Zhao, Parameter Studies on High-Velocity Oxy-Fuel Spraying of MCrA1Y Coatings, Surf. Coat. Techno., 108-109 (1998) 16-23.

DOI: 10.1016/s0257-8972(98)00630-6

Google Scholar

[15] T.S. Sidhu, S. Prakash, and R.D. Agrawal, Studies of the Metallurgical and Mechanical Properties of High Velocity Oxy-Fuel Sprayed Stellite-6 Coatings on Ni- and Fe-Based Superalloys, Surf. Coat. Technol., 201 (2006) 273-281.

DOI: 10.1016/j.surfcoat.2005.11.108

Google Scholar

[16] S. Matthews, M. Hyland and B. James, Microhardness variation in relation to carbide development in heat treated Cr3C2–NiCr thermal spray coatings, Acta Materialia, 51 (2003) 4267-4277.

DOI: 10.1016/s1359-6454(03)00254-4

Google Scholar

[17] Subhash Kamal, R. Jayaganthan, S. Prakash and Sanjay Kumar, Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 ◦C, J. Alloys Compd., 463 (2008) 358-372.

DOI: 10.1016/j.jallcom.2007.09.019

Google Scholar

[18] S. Matthews, B. James, and M. Hyland, The Effect of Heat Treatment on the Oxidation Mechanism of Blended Powder Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 19 (2010) 119-127.

DOI: 10.1007/s11666-009-9381-7

Google Scholar

[19] J.M. Guilemany, J.M. Miguel, S. Vizcaino, C. Lorenzana, J. Delgado and J. Sanchez, Role of heat treatments in the improvement of the sliding wear properties of Cr3C2–NiCr coatings, Surf. Coat. Technol., 157 (2002) 207–213.

DOI: 10.1016/s0257-8972(02)00148-2

Google Scholar

[20] S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, High-Temperature Behavior of a NiCr-Coated T91 Boiler Steel in the Platen Superheater of Coal-Fired Boiler, J. Therm. Spray Technol., 22 (2013) 838-847.

DOI: 10.1007/s11666-013-9899-6

Google Scholar

[21] S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, High Temperature Hot Corrosion Behaviour of NiCr and Cr3C2-NiCr Coatings on T91 Boiler Steel in an Aggressive Environment at 750 °C, Surf. Coat. Technol., 206 (2012) 3839-3850.

DOI: 10.1016/j.surfcoat.2012.01.060

Google Scholar

[22] M.A. Uusitalo, P.M.J. Vuoristo, and T.A. Mantyla, High Temperature Corrosion of Coatings and Boiler Steels Below Chlorine-Containing Salt Deposits, Corros. Sci., 46 (2004) 1311-1331.

DOI: 10.1016/j.corsci.2003.09.026

Google Scholar

[23] P.H. Suegama, C.S. Fugivara, A.V. Benedetti, J. Fernandez, J. Delgado, J.M. Guilemany, Electrochemical behaviour of thermally sprayed Cr3C2–NiCr coatings in 0. 5 M H2SO4 media, J. Appl. Electrochem., 32 (2002) 1287-1295.

DOI: 10.1016/j.electacta.2003.09.017

Google Scholar

[24] Manpreet Kaur, Harpreet Singh, Satya Prakash, Surface engineering analysis of detonation-gun sprayed Cr3C2–NiCr coating under high-temperature oxidation and oxidation–erosion environments, Surf. Coat. Technol., 206 (2011) 530-541.

DOI: 10.1016/j.surfcoat.2011.07.077

Google Scholar

[25] D. Das, R. Balasubramaniam, and M.N. Mungole, Hot Corrosion of Carbon-Alloyed Fe3Al-Based Iron Aluminides, Mater. Sci. Eng. A, 338 (2002) 24-32.

DOI: 10.1016/s0921-5093(02)00072-2

Google Scholar

[26] S. Srikanth, B. Ravikumar, S.K. Das, K. Gopalakrishna, K. Nandakumar, and P. Vijayan, Analysis of Failures in Boiler Tubes Due to Fireside Corrosion in a Waste Heat Recovery Boiler, Eng. Fail. Anal., 10 (2003) 59-66.

DOI: 10.1016/s1350-6307(02)00030-4

Google Scholar

[27] A. Ul-Hamid, Diverse Scaling Behavior of the Ni-20Cr Alloy, Mater. Chem. Phys., 80 (2003) 135-142.

DOI: 10.1016/s0254-0584(02)00448-0

Google Scholar

[28] S. Sundararajan, S. Kuroda, K. Nishida, T. Itagaki, and F. Abe, Behaviour of Mn and Si in the Spray Powders During Steam Oxidation of Ni-Cr Thermal Spray Coatings, ISIJ Int., 44 (2004) 139-144.

DOI: 10.2355/isijinternational.44.139

Google Scholar

[29] S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar, Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2-25%NiCr coatings on nickel- and iron-based superalloys, Surf. Coat. Technol., 203 (2009) 1004-1013.

DOI: 10.1016/j.surfcoat.2008.09.031

Google Scholar

[30] N. Bala, H. Singh, and S. Prakash, High Temperature Oxidation Studies of Cold Sprayed Ni-20Cr and Ni-50Cr Coatings on SAE 213-T22 Boiler Steel, Appl. Surf. Sci., 2009, 255, pp.6862-6869.

DOI: 10.1016/j.apsusc.2009.03.006

Google Scholar

[31] M. Seiersten, and P. Kofstad, The Effect of SO3 on Vanadate-Induced Hot Corrosion, High Temp. Technol., 5 (1987) 115-122.

DOI: 10.1080/02619180.1987.11753353

Google Scholar

[32] D. Saxena, Effect of Zr and Y Addition on High Temperature Sulphidation Behaviour of Fe-15Cr-4Al, Ph.D. Thesis, Met. Mat. Engg. Dept., University of Roorkee, Roorkee, India, (1986).

Google Scholar

[33] F.H. Stott, F.I. Wei, C.A. Enahoro, The influence of manganese on the High-temperature oxidation of iron-chromium alloys, Mater. Corros., 40 (1989) 198-205.

DOI: 10.1002/maco.19890400403

Google Scholar

[34] M.F. Stroosnijder, R. Mevrel, M.J. Bennet, The Interaction of Surface Engineering and High Temperature Corrosion Protection, Mater. High Temp., (1994) 53-66.

Google Scholar