Effect of Heating Time Duration on Synthesis of Colloidal Silver Nanoparticles

Article Preview

Abstract:

Size-controlled silver nanoparticles are prepared at two different heating time duration (30 and 60min) under conventional heating at 80 ̊C in an aqueous solution of silver nitrate (AgNO3) as a precursor and trisodium citrate (C6H5O7Na3.2H2O) as a reducing agent under continuous stirring. The size and size distribution of the resulting silver nanoparticles prepared under conventional heating are strongly dependent on the duration of heating. As the heating duration is increased, aggregation and grain growth is observed. When duration of heating was 60min a distinct increase in the particles size was observed that lead to shift in the plasmon band as confirmed by UV-Vis absorption spectroscopy. TEM images shows that silver nanoparticles are nearly spherical in shape and their sizes are ranging between 2-42 nm and their cubic structure was confirmed by X-ray diffractogram. From X-ray diffractogram we calculated crystallite size using Scherrer’s equation which comes out to about 36nm and that determined from Hall-Williamson plot turns out to be 19nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-18

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Singh, S. Singh, S. Prasad, I. S. Gambhir Digest J. of Nanomate. and Biostru. 3 (2008) 115 – 122.

Google Scholar

[2] D. D. Evanoff Jr. and G. Chumanov Chem. Phys. Chem 6 (2005) 1221 – 1231.

Google Scholar

[3] J. S. Kim, E. Kuk, K. N. Yu, J. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C.Y. Hwang, Y.K. Kim, Yoon-Sik Lee, Dae Hong Jeong, Myung-Haing Cho Nanomedicine: Nanotech. Biology, and Medicine 3 (2007) 95– 101.

DOI: 10.1016/j.nano.2006.12.001

Google Scholar

[4] S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, u.A. utkowsky and C. Boritz J. of Chem. Education 84 (2007), 322-325.

Google Scholar

[5] R. Varshney, A. N. Mishra, S. Bhadauria, M. S. Gaur, Digest J. of Nanomate. and Biostructures 4 (2009) 349 –55.

Google Scholar

[6] D. M. Ali., M. Sasikala., M. Gunasekaran, N. Thajuddin, Digest J. of Nanomate. and Biostructures 6 (2011) 385-390.

Google Scholar

[7] A. Henglein Chem. Mater. 10 (1998) 444-450.

Google Scholar

[8] U. Kreibig, M. Vollmer Springer Series in Materials Science25 (1995) 226-231.

Google Scholar

[9] Y. Shiraishi, N. Toshima Colloids Surf. A 169 (2000)59-66.

Google Scholar

[10] T. Sun, K. Seff Chem. Rev. 94 (1994) 857- 870.

Google Scholar

[11] M.J. Bloemer, J.W. Haus, P.R.J. Ashley Opt. Soc. Am. B 7 (1990) 790 - 795.

Google Scholar

[12] L.T. Chang, C.C.J. Yen Appl. Polym. Sci. 55 (1995) 371.

Google Scholar

[13] D. C. Xueliang Q. Xiaolin Qiu Fatang Tan J. Chen R. Jiang J. Mater Sci: Mater Electron 21 (2010) 486–490.

Google Scholar

[14] V.K. Sharma, R. A. Yngard, Y. Lin Advances in Colloid and Interface Science 145 (2009) 83–96.

Google Scholar

[15] M. Valodkar, A. Bhadoria, J. Pohnerkar, M. Mohan, S. Thakore Carbohydrate Research 345 (2010) 1767–1773.

DOI: 10.1016/j.carres.2010.05.005

Google Scholar

[16] P. Somasundaran, X. Fang, S. Ponnurangam and B. Li KONA Powder and Particle Journal 28 (2010) 38-49.

DOI: 10.14356/kona.2010007

Google Scholar

[17] M. Raffi, F. Hussain, T.M. Bhatt, J.I. Akhter, A. Hameed and M.M. Hasan J. Mater. Sci. Technol. 24 (2008) 192-196.

Google Scholar

[18] P. Irwin, J. Martin, L. Nguyen, Y. He, A. Gehring, C. Chen J. of Nanobiotech. 8 (2010) 1-12.

Google Scholar

[19] M. Rai, A. Yadav, A. Gade Biotech. Advances 27 (2009) 76–83.

Google Scholar

[20] M. G. Guzmán, J. Dille, S. Godet World Academy of Science, Engineering and Technology 43 (2008) 357-364.

Google Scholar

[21] P. Gupta, M. Bajpai, and S. K. Bajpai The J. of Cotton Science 12 (2008) 280–286.

Google Scholar

[22] A.C. Power, J.F. Cassidy and A.J. Betts Conference Papers School of Chemical and Pharmaceutical Sciences 19 (2009) 181-190.

Google Scholar

[23] C. Liu, X. Yang, H. Yuan, Z. Zhou and D. Xiao Sensors 7 (2007) 708-718.

Google Scholar

[24] M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, J. R. Lakowicz J. Opt. Soc. Am. B 24 (2007) 2259-2267.

Google Scholar

[25] M.J. Rosemary and T. Pradeep J. colloidal and int. sci. 268 (2003) 81-84.

Google Scholar

[26] Ratyakshi and R.P. Chauhan Asian J. of Chemistry 21 (2009) 113-116.

Google Scholar

[27] J. Zou, Y. Xu, B. Hou, D. Wu, Y. Sun China Particuology 5 (2007) 206–212.

Google Scholar

[28] L. t Bedel, C. Cayron, M. J. Francis Maury doi: 10. 1088/0957-4484/23/1/015603.

Google Scholar

[29] H. R. Ghorbani, A. A. Safekordi, H. Attar and S. M. Rezayat Sorkhabadi Chem. Biochem. Eng. 25 (2011) 317–326.

Google Scholar

[30] E. M. Egorova, A. A. Revina Colloids and Surfaces A: Physicochemical and Engineering Aspects 168 (2000) 87–96.

DOI: 10.1016/s0927-7757(99)00513-0

Google Scholar

[31] Y. Xie, R. Ye, H. Liu Colloids and Surfaces A: Physicochem. Eng. Aspects 279 (2006) 175–178.

Google Scholar

[32] M. A. Majeed Khan, S. Kumar, M. Ahamed, S. A Alrokayan and M. S AlSalhi Nanoscale Research Letters 6 (2011) 1-8.

Google Scholar

[33] B. R. Rehani, P.B. Joshi, K. N Lad, &A. Pratap Indian j. of pure and applied Phy 44 (2006) 157-161.

Google Scholar