Temperature Dependent Structural Properties of Liquid Ga

Article Preview

Abstract:

We present the calculation of structural properties for liquid Ga at different temperatures using pseudopotential theory. The temperature dependence of structure factor has been determined using the hard-sphere Percus-Yevick approximation which is characterized by single parameter hard sphere diameter or equivalently packing fraction. The temperature dependent hard-sphere diameter σ (T) is estimated using criterion from the calculated effective pair potential. The modified empty-core pseudopotential due to Hasegawa et al. (J. Non-Cryst. Solids. 117/118 (1990) 300), which is valid for all electrons and contains the repulsive delta function to achieve the necessary s-pseudisation is used for electron–ion interaction. The temperature effects have been studied via dimensionless damping term and potential parameter in the pair potential. Finally, the predicted results for structure factor, pair correlation function and coordination numbers have been compared with recent available data, and a good agreement has been achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-33

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.C. Gosh, A.Z. Ziauddin Ahmed, G.M. Bhuiyan, Eur. Phys. J. B. 56 (2007) 177.

Google Scholar

[2] C. Fiolhais, J.P. Perdew, S.Q. Armster, J.M. Macleran, M. Brajczewska, Phys. Rev. B. 51 (1995) 14001.

Google Scholar

[3] M. Mouas, J. -G. Gasser, S. Hellal, B. Grosdidier, A. Makradi, S. Belouettar, J. Chem. Phys. 136 (2012) 094501.

Google Scholar

[4] M. Bahadori, J. Mol. Liq. 145 (2009) 19.

Google Scholar

[5] S. Munejiri, F. Shimojo, K. Hoshino, J. Phys.: Conden. Matter. 12 (2000) 4313.

Google Scholar

[6] D. Bolmatov, V.V. Brazhkin, K. Trachenko, Scientific Reports. 2: 421 (2012) 1.

Google Scholar

[7] W-C. Pilgrim, M. Ross, L.H. Young, Physica B. 241-243 (1998) 935.

Google Scholar

[8] A.B. Patel, N.K. Bhatt, B.Y. Thakore, P.R. Vyas, A.R. Jani, AIP Conf. Proc. 1591 (2014) 1312.

Google Scholar

[9] A. B. Patel, N. K. Bhatt, B. Y. Thakore, P. R. Vyas, A. R. Jani, Phys. Chem. Liquids. 52 (2014) 471.

Google Scholar

[10] A. B. Patel, N. K. Bhatt, B. Y. Thakore, P. R. Vyas, A. R. Jani, Mol. Phys. 112 (2014) (2000).

Google Scholar

[11] A.B. Patel, N.K. Bhatt, B.Y. Thakore, A.R. Jani, AIP Conf. Proc. 1536 (2013) 589.

Google Scholar

[12] A. B. Patel, N. K. Bhatt, B. Y. Thakore, P. R. Vyas, A. R. Jani, Eur. Phys. J. B. 87 (2014) 39.

Google Scholar

[13] K. Takanaka, R. Yamamoto, Phys. Status Solidi (b). 84 (1977) 813.

Google Scholar

[14] J.K. Percus, G.J. Yevick, Phys. Rev. 110 (1958) 1.

Google Scholar

[15] Y. Waseda, The Structure of Non-Crystalline Materials, Mac Graw-Hill International Book Compny, New York (1980).

Google Scholar

[16] M. Hasegawa, K. Hoshino, M. Watabe, H. Young, J. Non-Cryst. Solids. 117/118 (1990) 300.

Google Scholar

[17] S. Ichimaru, K. Utsumi, Phys. Rev. B. 24 (1981) 3220.

Google Scholar

[18] B. Grosdidier, M.S. Al-Busaidi, S.M. Osman, J. Non-Cryst. Solids. 353 (2007) 3484.

Google Scholar

[19] C. Fiolhais, J.P. Perdew, S.Q. Armster, J.M. MacLaren, M. Brajczewska, Phys. Rev. B. 53 (1996)13193.

DOI: 10.1103/physrevb.53.13193

Google Scholar

[20] M.C. Bellissent-Funel, R. Bellissent, G. Tourand, J. De Physique, Colloque. C8 (1980) 262.

DOI: 10.1051/jphyscol:1980867

Google Scholar

[21] S-F. Tsay, S. Wang, Phys. Rev. B 50(1994) 108.

Google Scholar

[22] W. Hoyer, I. Kaban, Th. Halm, J. Optoelectronics and Advanced Materials 2 (2001) 255.

Google Scholar