Temperature Effects on Dynamical Conductivity of Graphene Based Systems

Article Preview

Abstract:

We have investigated dynamical conductivity of graphene based systems; Single Layer Graphene (SLG), Bilayer Graphene (BLG) and Single Layer Gapped Graphene (SLGG), at zero and finite temperatures by taking into the account screening effects within the Random Phase Approximation (RPA). Rσq,ω and Rσq,ω show peaks that correspond to single particle excitations (SPE) and collective excitations (CE) respectively. In SLG, SPE positions are observed at ωħ≈0.5εf,εf∧1.5εf for q0.5kf,kf∧1.5kf respectively for all values of temperature. The peak height increases with increasing electron momentum and temperature. We noticed that for finite momentumq0.5kf∧kf, the peak height is maximum for T=0K and minimum for T=0.5Tf while that for T=Tf is intermediate. We also noticed that Rσq,ω peaks are blue shifted at high temperature for all graphene systems. In case of BLG, Landau undamped peak has been observed at T=0 for finite momentumq=0.3kf which becomes smooth at T=0.5Tf∧Tf. For q=0.8kf, Landau damped plasmon peaks have also been observed for all values of temperature. No major changes are observed in case of SLGG, with respect to SPE and CE peaks positions and heights specifically due to small change in band gap value incorporated here.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

6-13

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhang, J. W. Tan, H. L. Stormer and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature 438 (2005) 201.

DOI: 10.1038/nature04235

Google Scholar

[2] T. Ando and M. Koshino, Optical absorption by interlayer density excitations in bilayer graphene, J. Phys. Soc. Jpn. 78 (2009) 104716.

DOI: 10.1143/jpsj.78.104716

Google Scholar

[3] V. P. Gusynin, S. G. Sharapov, Transport of Dirac quasiparticles in graphene: Hall and optical conductivities, Phys. Rev. B 73 (2006) 245411.

DOI: 10.1103/physrevb.73.245411

Google Scholar

[4] B. Wunsch, T. Stauber, F. Sols, and F. Guinea, Dynamical polarization of graphene at finite doping, New J. Phys. 8 (2006) 318.

DOI: 10.1088/1367-2630/8/12/318

Google Scholar

[5] E. H. Hwang and S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene, Phys. Rev. B 75 (2007) 205418.

DOI: 10.1103/physrevb.75.205418

Google Scholar

[6] M. Koshino and T. Ando, Transport in bilayer graphene: Calculations within a self-consistent Born approximation, Phys. Rev. B 73 (2006) 245403.

DOI: 10.1103/physrevb.73.245403

Google Scholar

[7] J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres, Electronic properties of Graphene multilayers, Phys. Rev. Lett. 97 (2006) 266801.

DOI: 10.1103/physrevlett.97.266801

Google Scholar

[8] L. A. Falkovsky and A. A. Varlamov, Space-time dispersion of graphene conductivity, Eur. Phys. J. B 56 (2007) 281.

DOI: 10.1140/epjb/e2007-00142-3

Google Scholar

[9] L. Z. Zhe, Coulomb Screening and Plasmon Excitation in Graphene at Finite Temperature, Commun. Theor. Phys. 52 (2009) 361.

DOI: 10.1088/0253-6102/52/2/33

Google Scholar

[10] R. Sensarma, E. H. Hwang and S. D. Sarma, Dynamic screening and low-energy collective modes in bilayer graphene, Phys. Rev. B 82 (2010) 195428.

DOI: 10.1103/physrevb.82.195428

Google Scholar

[11] G. Borghi, M. Polini, R. Asgari and A. H. MacDonald, Dynamical response functions and collective modes of bilayer graphene, Phys. Rev. B 80 (2009) 241402 R.

DOI: 10.1103/physrevb.80.241402

Google Scholar

[12] X. F. Wang and T. Chakraborty, Coulomb screening and collective excitations in a graphene bilayer, Phys. Rev. B 75 (2007) 041404 R.

Google Scholar

[13] X. F. Wang and T. Chakraborty, Coulomb screening and collective excitations in biased bilayer graphene, Phys. Rev. B 81 (2010) 081402 R.

DOI: 10.1103/physrevb.81.081402

Google Scholar

[14] W. L. You and X. F. Wang, Dynamic screening and plasmon spectrum in bilayer graphe, Nanotechnology 23 (2012) 505204.

DOI: 10.1088/0957-4484/23/50/505204

Google Scholar

[15] D. K. Patel, S. S. Z. Ashraf and A. C. Sharma, Finite temperature dynamical polarization and plasmons in gapped graphene, Phys. Status Solidi B 252 (2015) 1817.

DOI: 10.1002/pssb.201451682

Google Scholar

[16] P. K. Pyatkovskiy, Dynamical polarization, screening, and plasmons in gapped graphene, J. Phys. Condens. Matter 21 (2009) 025506.

DOI: 10.1088/0953-8984/21/2/025506

Google Scholar

[17] A. Qaiumzadeh and R. Asgari, The effect of sublattice symmetry breaking on the electronic properties of a doped graphene, New. J. Phys 11 (2009) 095023.

DOI: 10.1088/1367-2630/11/9/095023

Google Scholar

[18] L. A. Falkovsky and S. S. Pershoguba, Optical far-infrared properties of a graphene monolayer and multilayer, Phys. Rev. B 76 (2007) 153410.

DOI: 10.1103/physrevb.76.153410

Google Scholar

[19] I. Gierz, C. Riedl, U. Starke, C. R. Ast, and K. Kern, Atomic Hole Doping of Graphene, Nano Lett. 8 (2008) 4603.

DOI: 10.1021/nl802996s

Google Scholar

[20] D. A. Siegel, S. Y. Zhou, F. E. Gabaly, A. V. Fedorov, A. K. Schmid, and A. Lanzara, Self-doping effects in epitaxially grown graphene, Appl. Phys. Lett. 93 (2008) 243119.

DOI: 10.1063/1.3028015

Google Scholar

[21] S. Y. Zhou, D. A. Siegel, A. V. Fedorov, and A. Lanzara, Physica E 40 2642 (2008).

Google Scholar

[22] G. Giovannetti, P. A. Khomyako, G. Brocks, P. J. Kelly, and J. Van den Brink, Phys. Rev. B 76 073103 (2007).

Google Scholar

[23] D. K. Patel, A. C. Sharma and S. S. Z. Ashraf, Temperature dependent screened electronic transport in gapped graphene, Phys. Status Solidi B 252 (2015) 282.

DOI: 10.1002/pssb.201451040

Google Scholar

[24] A. C. Sharma and A. Bajpai, Dynamical conductivity of low-dimensional systems, J. Mod. Phys. B 16 (2002) 151.

Google Scholar