Structural Properties of In1-xSnx at Different Concentrations and Temperatures

Article Preview

Abstract:

The partial structure factors for liquid alloy In1-xSnx have been computed at varying concentration and temperatures using pseudopotential theory. The structure factor S(q) and pair correlation function g (r) have been determined using the hard-sphere approximation. The temperature dependent hard-sphere diameter σ (T) is estimated using Vσ=Vminr+12kBT criterion from the computed pair potential. The modified empty-core local pseudopotential, which represents the orthogonalisation effect due to s-core states, is used for electron–ion interaction with proper screening function. The only potential parameter, the core radius, is determined at different temperatures from the knowledge of structure factor. Intrinsic temperature effects have been studied through dimensionless damping term (see formula in paper) in the pair potential. The effect of temperature and concentration on structure factors is discussed to shed light on bonding in technologically important alloy. This used pseudopotential proved successful in explaining the structural properties of non-crystalline alloys at higher temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-146

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Vora, Rom. Journ. Phys. 53 (2008) 517.

Google Scholar

[2] N. H. March, Liquid metals: Concepts and theory, Cambridge University Press (1990).

Google Scholar

[3] D. Bolmatov, V. V. Brazhkin, K. Tranchenka, Scientific Reports2 (2012) 1.

Google Scholar

[4] M. Bahadori, J. Mol. Liq. 145 (2009) 19.

Google Scholar

[5] S. Munejiri, F. Shimojo, K. Hoshino, J. Phys.: Conden. Matter. 12 (2000) 4313.

Google Scholar

[6] W. –C. Pilgrim, M. Ross, L. H. Young, Physica B. 241-243 (1998) 935.

Google Scholar

[7] B. Grosdidier, M.S. Al-Busaidi, S.M. Osman, J. Non-Cryst. Solids. 353 (2007) 3484.

Google Scholar

[8] A. B. Patel, Comprehensive study of liquid polyvalent metals using pseudopotential theory. PhD thesis, Sardar Patel University (2014).

Google Scholar

[9] M. Hasegawa, K. Hoshino, M. Watabe, H. Young, J. Non-Cryst. Solids. 117/118 (1990) 300.

Google Scholar

[10] K. Hoshino, W. H. Young, J. Phys. F: Met. Phys. 16 (1986) 1659.

Google Scholar

[11] S. Ichimaru, K. Utsumi, Phys. Rev. B. 24 (1981) 3220.

Google Scholar

[12] A. B. Patel, N. K. Bhatt, B. Y. Thakore, P. R. Vyas, A. R. Jani, Phys. Chem. Liquids. 52 (2014) 471.

Google Scholar

[13] A. B. Patel, N. K. Bhatt, B. Y. Thakore, P. R. Vyas, A. R. Jani, Mol. Phys. 112 (2014) (2000).

Google Scholar

[14] A. B. Patel, N. K. Bhatt, B. Y. Thakore, P. R. Vyas, A. R. Jani, Eur. Phys. J. B. 87 (2014) 39.

Google Scholar

[15] N. W. Ashcroft, D.C. Langreth, Phys. Rev. 156 (1967) 685.

Google Scholar

[16] K. Takanaka, R. Yamamoto, Phys. Status Solidi (b). 84 (1977) 813.

Google Scholar

[17] A. B. Patel, N. K. Bhatt, B. Y. Thakore, A. R. Jani, AIP Conf. Proc. 1536 (2013) 589.

Google Scholar

[18] A.B. Patel, N.K. Bhatt, B.Y. Thakore, P.R. Vyas, A.R. Jani, AIP Conf. Proc. 1591 (2014) 1312.

Google Scholar

[19] Y. Waseda, The Structure of Non-Crystalline Materials, MacGraw-Hill International Book Compny, New York (1980).

Google Scholar