Heating Rate and Composition Dependence of Crystallization Temperature of Cu-Based Metallic Glasses

Article Preview

Abstract:

The variation of onset of crystallization temperature (Tx) and peak crystallization temperature (Tp) with heating rate (q) is studied. Tx and Tp vary in a power law behavior with heating rate (q) for Cu60 Zr20Ti20 metallic glass and these parameters show a linear variation for Cu60Zr40 metallic glass. The power law variation is expressed as Tx (or Tp) = T0 [q]y; where, q is the normalized heating rate, T0 is the Tx (or Tp) at a heating rate of 10Cmin-1. Further, the calculated values of Tx (or Tp) are found to be in good agreement with the experimental results. Hence, the power law relation is found to be an appropriate theoretical expression for the variation of crystallization temperature (Tx or Tp) with heating rate (q) for Cu60 Zr20Ti20 metallic glass. In addition to heating rate, the composition of a metallic glass also affects its crystallization temperature. It is observed that the characteristics temperatures shift towards higher values with increase in number of components.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-161

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Thermal and mechanical properties of Cu-based Cu-Zr-Ti bulk glassy alloys, Mater. Trans. JIM. 42 (2001) 1149-1151.

DOI: 10.2320/matertrans.42.1149

Google Scholar

[2] Y. K. Kovneristyj, A. G. Pashkovskaya, Bulk amorphization of alloys in the intermetallide containing system Ti–Cu–Zr, Amorf. (Stekloobraz) Met. Mater. RAN Int. Metallurgii. M. 1992; pp.153-157.

Google Scholar

[3] S. Kasyap, A. T. Patel, A. Pratap, Crystallization kinetics of Ti20Zr20Cu60 metallic glass by iso-conversional methods using modulated differential scanning calorimetry, J. Therm. Anal. Calorim. 116 (2014) 1325-1336.

DOI: 10.1007/s10973-014-3753-z

Google Scholar

[4] A. Pratap, K. N. Lad, R. T. Savaliya, G. K. Dey, S. Banerjee, A. M. Awasthi, Kinetics of crystallization Zr20Ti20Cu60 amorphous alloy using modulated differential scanning calorimetry, Phys. Chem. Glasses. 45 (2004) 258-262.

DOI: 10.1016/j.tca.2004.05.026

Google Scholar

[5] A. Pratap, K. G. Raval, A. Gupta, MDSC studies of the crystallization kinetics of Cu60Zr20Ti20 glass, Proc. 11th Nat. Symp. on Therm. Anal. 1998; pp.22-24.

Google Scholar

[6] S. R. Joshi, A. Pratap, N. S. Saxena, M. P. Saksena, A. Kumar, Heating rate and composition dependence of the glass transition temperature of a ternary chalcogenide glass, J. Mater. Sci Lett. 13 (1994) 77-79.

DOI: 10.1007/bf00416803

Google Scholar

[7] M. Lasocka, The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater. Sci. Eng. A. 23 (1976) 173-177.

DOI: 10.1016/0025-5416(76)90189-0

Google Scholar

[8] H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957) 1702-1706.

DOI: 10.1021/ac60131a045

Google Scholar

[9] T. Akahira, T. Sunose, Joint convention of four electrical institutes, Res. Report. Chiba. Inst. Technol. (Sci. & Technol. ) 16 (1971) 22-31.

Google Scholar

[10] A. Augis, J. E. Bennett, Calculation of Avarami parameters for heterogeneous solid state reactions using modification of the Kissinger method, J. Therm. Anal. Calorim. 13 (1978) 283-292.

DOI: 10.1007/bf01912301

Google Scholar

[11] P. G. Boswell, On the calculation of activation energies using modified Kissinger method, J. Therm. Anal. Calorim. 18 (1980) 353-358.

Google Scholar

[12] T. Ozawa, A new method for analyzing thermogravimetric data, Bull. Chem. Soc. Jpn. 38 (1965) 1881-1886.

Google Scholar

[13] J. H. Flynn, L. A. Wall, General treatment of the thermogravimetry of polymers, J. Res. Natl. Bur. Stand. A Phys Chem. 70A (1996) 487-523.

Google Scholar

[14] L. Liu, Z. F. Wu, J. Zhang, Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloys, J. Alloys Compd. 339 (2002) 90-95.

DOI: 10.1016/s0925-8388(01)01977-6

Google Scholar

[15] X. Ou, G. Q. Zhang, X. Xu, L. N. Wang, J. H. Liu, J. Z. Jiang, Crystallization kinetics in Cu35Ag15Zr45Al15 metallic glass, J. Alloys Compds. 441 (2007) 181-184.

DOI: 10.1016/j.jallcom.2006.08.340

Google Scholar

[16] G. D. Ladiwala, N. S. Saxena, S. R. Joshi, A. Pratap, M. P. Saksena, Crystallization kinetics and specific heat of Cu60Zr40 glassy alloys, Mater. Sci. Engg. A. A181/A182 (1994) 1427-1430.

DOI: 10.1016/0921-5093(94)90878-8

Google Scholar

[17] A. Inoue, A. Takeuchi, T. Zhang, Ferromagnetic bulk amorphous alloys, Metall. Mater. Trans. A. 29 (1998) 1779-1793.

DOI: 10.1007/s11661-998-0001-9

Google Scholar

[18] O. N. Senkov, D. B. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys, Mater. Res. Bull. 36 (2001) 2183-2198.

DOI: 10.1016/s0025-5408(01)00715-2

Google Scholar

[19] Z. P. Lu, C. T. Liu, Y. D. Dong, Effects of atomic bonding nature and size mismatch on thermal stability and glass-forming ability of bulk metallic glasses, J. Non-Crys. t Solids. 341 (2004) 93-100.

DOI: 10.1016/j.jnoncrysol.2004.04.024

Google Scholar

[20] Y. S. Yun, H. S. Nam, P. R. Cha, W. T. Kim, D. H. Kim, Effects of atomic size difference and heat of mixing parameters on local structure of a model metallic glass system, Met. Mater. Int. 20 (2014) 105-111.

DOI: 10.1007/s12540-013-6013-z

Google Scholar

[21] A. Takeuchi, A. Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Mater. Trans. JIM. 41 (2000) 1372-1378.

DOI: 10.2320/matertrans1989.41.1372

Google Scholar

[22] L. Liu, Z. F. Wu, J. Zhang, Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloy, J. Alloy Compd. 339 (2002) 90-95.

DOI: 10.1016/s0925-8388(01)01977-6

Google Scholar

[23] Y. X. Zhuang, W. H. Wang, Y. Zhang, M. X. Pan, D. Q. Zhao, Crystallization kinetics and glass transition of Zr41Ti14Cu12. 5Ni10−xFexBe22. 5 bulk metallic glasses, Appl. Phys. Lett. 75 (1999) 2392-2394.

DOI: 10.1063/1.125024

Google Scholar