[1]
K.B. Modi, P.Y. Raval, S.J. Shah, C.R. Kathad, S.V. Dulera, M.V. Popat, K.B. Zankat K.G. Saija, T.K. Pathak, N.H. Vasoya V.K. Lakhani, Usha Chandra, Prafulla K. Jha, Raman and Mossbauer spectroscopy and X-ray diffractometry studies on quenched copper–ferri–aluminates, Inorg. Chem. 54 (2015).
DOI: 10.1021/ic502497a
Google Scholar
[2]
K.B. Modi, S.V. Dulera, N.H. Vasoya, P.Y. Raval, P.R. Panasara, K.G. Saija, K.M. Jadhav, On the compressibility of ferrite spinels: a high-pressure X-ray diffraction study of MFe2O4 (M=Mg, Co, Zn), AIP Conf. Proc. (In Press).
Google Scholar
[3]
S.R. Murthy, ΔE-effect in Co-Zn ferrites, Cryst. Res. Tech. 25 (4) (1990) 461-466.
DOI: 10.1002/crat.2170250420
Google Scholar
[4]
V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla, K.M. Jadhav, Effect of zinc substitution on structural and elastic properties of cobalt ferrite, J. Alloys. Compd. 488 (2009) 199-203.
DOI: 10.1016/j.jallcom.2009.08.078
Google Scholar
[5]
S.G. Algude, S.M. Patange, S.E. Shirsath, D.R. Mane, K.M. Jadhav, Elastic behaviour of Cr3+ substituted Co–Zn ferrites, J. Magn. Magn. Mater. 350(2014) 39-41.
DOI: 10.1016/j.jmmm.2013.09.021
Google Scholar
[6]
K. Sadhana, R. Sandhya, S.R. Murthy, K. Praveena, Temperature dependent elastic properties of nanocrystalline Co1−xZnxFe2O4, Mater. Sci. Semi. Proc. 40 (2015)578 – 584.
DOI: 10.1016/j.mssp.2015.07.029
Google Scholar
[7]
C. Dong, PowderX: Windows-95-based program for powder X-ray diffraction data processing, J. Appl. Cryst. 32 (1999) 838.
DOI: 10.1107/s0021889899003039
Google Scholar
[8]
Alex Goldman, Modern Ferrite Technology, 2nd Edition, Springer, New York, (2006).
Google Scholar
[9]
A.R. Tanna, H.H. Joshi, Computer Aided X-Ray Diffraction Intensity Analysis for Spinels: Hands-On Computing Experience, World Acad. Sci. 75 (2013) 78-85.
Google Scholar
[10]
M.J. Buerger, Crystal Structure Analysis, Wiley, New York, (1960).
Google Scholar
[11]
E. Greenberg, G. Kh. Rozenberg, W. Xu, R. Arielly, M.P. Pasternak, A. Melchior, G. Garbarino L.S. Dubrovinsky, On the compressibility of ferrite spinels: a high-pressure X-ray diffraction study of MFe2O4 (M=Mg, Co, Zn), High Press. Res. 29 (2009).
DOI: 10.1080/08957950903424424
Google Scholar
[12]
F. Birch, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K, Geophys. J. Int. 4(11) (1961) 295-311.
DOI: 10.1029/jb083ib03p01257
Google Scholar
[13]
P.U. Sharma, K.B. Modi, Effect of Fe3+ substitution on elastic properties of yttrium iron garnet, Phys. Scr. 81 (2010) 015601 (9 pp).
DOI: 10.1088/0031-8949/81/01/015601
Google Scholar
[14]
H. Kojitani, K. Nishimura, A. Kubo, M. Sakashita, K. Aoki, M. Akaogi, Raman spectroscopy and heat capacity measurement of calcium ferrite type MgAl2O4 and CaAl2O4, Phys. Chem. Minerals 30 (2003) 409-415.
DOI: 10.1007/s00269-003-0332-4
Google Scholar
[15]
J.J.U. Buch, G. Lalitha, T.K. Pathak, N.H. Vasoya, V.K. Lakhani, P.V. Reddy, Ravi Kumar,K. B. Modi, Structural and elastic properties of Ca-substituted LaMnO3 at 300 K, J. Phys. D: Appl. Phys. 41 (2008) 025406 (10pp).
DOI: 10.1088/0022-3727/41/2/025406
Google Scholar
[16]
Information on http: /www. webelements. com.
Google Scholar
[17]
Q. Wang, G.A. Saunders, D.P. Almond, M. Cankurtaran, K.C. Goretta, Elastic and nonlinear acoustic properties of YBa2Cu3O7−x ceramics with different oxygen contents, Phys. Rev. B. 52(5) (1955) 3711-3726.
Google Scholar
[18]
A.P. Roberts, E.J. Garboczi, Elastic properties of model porous ceramics, J. Am. Ceram. Soc. 83(12) (2000) 3041-3048.
DOI: 10.1111/j.1151-2916.2000.tb01680.x
Google Scholar
[19]
H. Li, S.M. Oppenheimer, S.I. Stupp, D.C. Dunand, L.C. Brinson, Effects of pore morphology and bone ingrowth on mechanical properties of microporous titanium as an orthopaedic implant material, Mater. Tran. 45(4) (2004) 1124-1131.
DOI: 10.2320/matertrans.45.1124
Google Scholar