On the Relationship between Structural-Elastic Properties of Co-Zn Ferrites at 300 K

Article Preview

Abstract:

The structural - elastic properties correlations have been studied for polycrystalline spinel ferrite system, ZnxCo1-xFe2O4, x = 0.0-0.6, at 300 K. The cation distribution formulae determined from X-ray diffraction line intensity calculations are used to calculate bulk modulus (Ko) in particular and Young′s modulus (E0), rigidity modulus (G0), longitudinal modulus (L0) and Lame′s constant (λL0) in general. The longitudinal wave velocity (Vl0) and transverse wave velocity (Vso) computed from empirical relation based on X-ray density and mean atomic weight is used to calculate L0 and G0 respectively. The applicability of the heterogeneous metal mixture rule for theoretical estimation of elastic constants has been tested. The results are compared with elastic moduli determined from conventional ultrasonic pulse transmission technique and causes for the observed difference between the two have been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-152

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.B. Modi, P.Y. Raval, S.J. Shah, C.R. Kathad, S.V. Dulera, M.V. Popat, K.B. Zankat K.G. Saija, T.K. Pathak, N.H. Vasoya V.K. Lakhani, Usha Chandra, Prafulla K. Jha, Raman and Mossbauer spectroscopy and X-ray diffractometry studies on quenched copper–ferri–aluminates, Inorg. Chem. 54 (2015).

DOI: 10.1021/ic502497a

Google Scholar

[2] K.B. Modi, S.V. Dulera, N.H. Vasoya, P.Y. Raval, P.R. Panasara, K.G. Saija, K.M. Jadhav, On the compressibility of ferrite spinels: a high-pressure X-ray diffraction study of MFe2O4 (M=Mg, Co, Zn), AIP Conf. Proc. (In Press).

Google Scholar

[3] S.R. Murthy, ΔE-effect in Co-Zn ferrites, Cryst. Res. Tech. 25 (4) (1990) 461-466.

DOI: 10.1002/crat.2170250420

Google Scholar

[4] V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla, K.M. Jadhav, Effect of zinc substitution on structural and elastic properties of cobalt ferrite, J. Alloys. Compd. 488 (2009) 199-203.

DOI: 10.1016/j.jallcom.2009.08.078

Google Scholar

[5] S.G. Algude, S.M. Patange, S.E. Shirsath, D.R. Mane, K.M. Jadhav, Elastic behaviour of Cr3+ substituted Co–Zn ferrites, J. Magn. Magn. Mater. 350(2014) 39-41.

DOI: 10.1016/j.jmmm.2013.09.021

Google Scholar

[6] K. Sadhana, R. Sandhya, S.R. Murthy, K. Praveena, Temperature dependent elastic properties of nanocrystalline Co1−xZnxFe2O4, Mater. Sci. Semi. Proc. 40 (2015)578 – 584.

DOI: 10.1016/j.mssp.2015.07.029

Google Scholar

[7] C. Dong, PowderX: Windows-95-based program for powder X-ray diffraction data processing, J. Appl. Cryst. 32 (1999) 838.

DOI: 10.1107/s0021889899003039

Google Scholar

[8] Alex Goldman, Modern Ferrite Technology, 2nd Edition, Springer, New York, (2006).

Google Scholar

[9] A.R. Tanna, H.H. Joshi, Computer Aided X-Ray Diffraction Intensity Analysis for Spinels: Hands-On Computing Experience, World Acad. Sci. 75 (2013) 78-85.

Google Scholar

[10] M.J. Buerger, Crystal Structure Analysis, Wiley, New York, (1960).

Google Scholar

[11] E. Greenberg, G. Kh. Rozenberg, W. Xu, R. Arielly, M.P. Pasternak, A. Melchior, G. Garbarino L.S. Dubrovinsky, On the compressibility of ferrite spinels: a high-pressure X-ray diffraction study of MFe2O4 (M=Mg, Co, Zn), High Press. Res. 29 (2009).

DOI: 10.1080/08957950903424424

Google Scholar

[12] F. Birch, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K, Geophys. J. Int. 4(11) (1961) 295-311.

DOI: 10.1029/jb083ib03p01257

Google Scholar

[13] P.U. Sharma, K.B. Modi, Effect of Fe3+ substitution on elastic properties of yttrium iron garnet, Phys. Scr. 81 (2010) 015601 (9 pp).

DOI: 10.1088/0031-8949/81/01/015601

Google Scholar

[14] H. Kojitani, K. Nishimura, A. Kubo, M. Sakashita, K. Aoki, M. Akaogi, Raman spectroscopy and heat capacity measurement of calcium ferrite type MgAl2O4 and CaAl2O4, Phys. Chem. Minerals 30 (2003) 409-415.

DOI: 10.1007/s00269-003-0332-4

Google Scholar

[15] J.J.U. Buch, G. Lalitha, T.K. Pathak, N.H. Vasoya, V.K. Lakhani, P.V. Reddy, Ravi Kumar,K. B. Modi, Structural and elastic properties of Ca-substituted LaMnO3 at 300 K, J. Phys. D: Appl. Phys. 41 (2008) 025406 (10pp).

DOI: 10.1088/0022-3727/41/2/025406

Google Scholar

[16] Information on http: /www. webelements. com.

Google Scholar

[17] Q. Wang, G.A. Saunders, D.P. Almond, M. Cankurtaran, K.C. Goretta, Elastic and nonlinear acoustic properties of YBa2Cu3O7−x ceramics with different oxygen contents, Phys. Rev. B. 52(5) (1955) 3711-3726.

Google Scholar

[18] A.P. Roberts, E.J. Garboczi, Elastic properties of model porous ceramics, J. Am. Ceram. Soc. 83(12) (2000) 3041-3048.

DOI: 10.1111/j.1151-2916.2000.tb01680.x

Google Scholar

[19] H. Li, S.M. Oppenheimer, S.I. Stupp, D.C. Dunand, L.C. Brinson, Effects of pore morphology and bone ingrowth on mechanical properties of microporous titanium as an orthopaedic implant material, Mater. Tran. 45(4) (2004) 1124-1131.

DOI: 10.2320/matertrans.45.1124

Google Scholar