Multi-Response Optimization of Micro-WEDM Process Parameters of Ti49.4-Ni50.6 Shape Memory Alloy for Orthopedic Implant Application

Article Preview

Abstract:

The present work deals with the optimization of micro-WEDM process parameters for machining Ti49.4-Ni50.6 shape memory alloy (SMA) for orthopedic implant application. Effect of micro-WEDM parameters viz. Gap voltage, capacitance, wire feed and wire tension on the response variables such as material removal rate, surface roughness, kerf width and dimensional deviation is determined. As Ti-Ni SMA has fascinating properties and bio-compatibility, have been considered for present work. Nine experiments have been performed on micro-WEDM based on an orthogonal array of Taguchi method. Subsequently, the grey relational analysis (GRA) method is applied to determine an optimal set of process parameters. It is observed that optimized set of parameters A3B3C3D1 viz. 140 V gap voltage, 0.4 µF capacitance, wire feed 30 µm/sec and 30% of wire tension determined by using GRA offers maximum MRR and minimum SR, KW and DD. From the Analysis of Variance, it is seen that the process parameter capacitance is the most significant parameter for multi-response optimization with a percentage contribution of 77.91%. Young’s modulus also checked for biocompatibility. Also, SEM images are taken to confirm the results offering better surface quality. Heat treatment process like annealing is found to be the most suitable to recover shape memory effect of WEDMed samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-21

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kaynak, H.E. Karaca, R.D. Noebe, I.S. Jawahir, Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: A comparison of tool-wear performance with dry and MQL machining, Wear. 306(2013), pp.51-63.

DOI: 10.1016/j.wear.2013.05.011

Google Scholar

[2] M. Manjaiah,S. Narendranath , S. Basavarajappa, Review on non- conventional machining of shape memory alloy, Trans. Nonferrous Met.Soc.China. 24 (2014), pp.12-21.

DOI: 10.1016/s1003-6326(14)63022-3

Google Scholar

[3] H.C. Lin, K.M. Lin, Y.C. Chen, A study on the machining of TiNi shape memory alloys, Journal of Materials Processing Technology. 105 (2000),pp.327-332.

DOI: 10.1016/s0924-0136(00)00656-7

Google Scholar

[4] K. Weinert, V.Petzoldt, Machining of NiTi based shape memory alloys, Materials Science and Engineering.378 (2004), pp.180-184.

DOI: 10.1016/j.msea.2003.10.344

Google Scholar

[5] M.P. Jahan, Y.S. Wong, M. Rahman, A study on the quality micro-hole machining of Tungsten Carbide by micro-EDM process using Transistor and RC-type pulse Generator, Journal of Materials Processing Technology, 209 (2009) 1706–1716.

DOI: 10.1016/j.jmatprotec.2008.04.029

Google Scholar

[6] M.P. Jahan, M. Rahman, Y.S. Wong, A review on the conventional and micro-electro-discharge machining of tungsten carbide. International Journal of Machine Tool & Manufacture, 51 (2011) 837–858.

DOI: 10.1016/j.ijmachtools.2011.08.016

Google Scholar

[7] P. Sivaprakasam, P. Hariharan, S. Gowri, Modeling and analysis of micro-WEDM process of titanium alloy (Tie6Ale4V) using response surface approach, Materials Science and Engineering.,17 (2014) 227-235.

DOI: 10.1016/j.jestch.2014.06.004

Google Scholar

[8] Scott F. Miller, Chen-C. Kao, Albert J. Shih, and Jun Qu, Investigation of wire electrical discharge machining of thin cross sections and compliant mechanisms, International journal of machine tools & manufacture, 45( 2005), PP 1717-1725.

DOI: 10.1016/j.ijmachtools.2005.03.003

Google Scholar

[9] M. Rahman, H.S. Lim, K.S. Neo, A. Senthil Kumar, Y.S. Wong, X.P. Li, Tool-based nano finishing and micromachining, Journal of Materials Processing Technology, 185 (2007) 2–16.

DOI: 10.1016/j.jmatprotec.2006.03.121

Google Scholar

[10] P.A. Shiva, K. T. Mannan, K. Arkanti, Parametric Optimization in Wire Electrical Discharge Machining of Titanium Alloy Using Response Surface Methodology, Materials Today:Proceeding. 4 (2017), pp.1434-1441.

DOI: 10.1016/j.matpr.2017.01.165

Google Scholar

[11] PreetamSelmokar, Sujit Pardeshi, Experimental Investigation for Difficult-to-Machine Materials Using Micro-WEDM,IJRMET Vol. 4(2014), 178-181.

Google Scholar

[12] T.U. Siddique, J. Ramkumar, Micro-wire electric discharge machining of Mg alloy used in biodegradable orthopedic implants, Materials Today: Proceedings 4 (2017) 10273-10277.

DOI: 10.1016/j.matpr.2017.06.363

Google Scholar

[13] K. P. Somashekhar, Jose Mathew, N. Ramachandran, A flesibility approach by simulated annealing on optimization of micro-wire electric discharge parameters, Int J Adv ManufTechnol (2012) 61:1209-1213.

DOI: 10.1007/s00170-012-4096-1

Google Scholar

[14] Di Shichun, Chu Xuyang, Wei Dongbo, Wang Zhenlong, Chi Guanxin, Liu Yuan, Analysis of kerf width in micro-WEDM, International Journal of Machine Tools & Manufacture 49 (2009), 788–792.

DOI: 10.1016/j.ijmachtools.2009.04.006

Google Scholar

[15] Saini, V. K., Khan, Z. A., Siddiquee, A. N., Optimization of Wire Electric Discharge Machining of Composite Material (AL6061/SICP) Using Taguchi Method. Journal of Mechanical and Production Engineering 2(2013), 2315-4489.

Google Scholar

[16] Rao, S., Ramji, K., Satyanarayana, B., Prediction of material removal rate of Aluminum BIS-24345 alloy. International Journal of Engineering Science and Technology 2(2010), 7729-7739.

Google Scholar

[17] Lin CL, Lin JL, Ko TC. Optimization of the WEDM process based on the orthogonal array with Fuzzy logic and grey relational analysis method. Advanced manufacturing technology (2002), 19:271-277.

DOI: 10.1007/s001700200034

Google Scholar

[18] K. P. Somashekhar, J. Mathew, N. Ramachandran, Multi-objective optimization of micro wire electric discharge machining parameters using grey relational analysis with Taguchi method, Proc. IMechE Vol. 225 part C: J. Mechanical Engg Science (2011).

DOI: 10.1177/0954406211400553

Google Scholar

[19] A. Ramamurthy, R. Sivaramakrishnan, T. Muthuramalingam, Taguchi-Grey computation methodology for optimum multiple performance measures on machining titanium alloy in WEDM process, Indian Journal of Engineering & Materials Sciences, 22 (2015).

DOI: 10.4028/www.scientific.net/amm.766-767.861

Google Scholar

[20] Sharma P., Bhambri K., Multi-Response Optimization by Experimental Investigation of Machining Parameters in CNC Turning by Taguchi Based Grey Relational Analysis. International Journal of Engineering Research and Applications 2(2012), 1594-1602.

DOI: 10.21884/ijmter.2017.4034.ppsjd

Google Scholar

[21] J.B. Saedon, Norkamal Jaafar, Mohd Azman Yahaya, NorHayati Saad, Mohd Shahir Kasim, Multi-objective optimization of titanium alloy through orthogonal array and grey relational analysis in WEDM, Procedia Technology, 15 ( 2014 ) 833 – 841.

DOI: 10.1016/j.protcy.2014.09.057

Google Scholar

[22] K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni based shape memory alloys, Progress in Materials Science (2005), 50. 5, pp.511-678.

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[23] M. S. Rasheed, Mustufa H. Abidi,,Abdulaziz M. El-Tamimi, and A. M. Al-Ahmari, Investigation of Micro-EDM input Parameters on Various Outputs in Machining Ni-Ti Shape Memory Alloy Using Full Factorial Design,Advanced Materials Research Vols. 816-817 (2013).

DOI: 10.4028/www.scientific.net/amr.816-817.173

Google Scholar

[24] Zahid AK, Arshad AS, Noor ZK, Urfi K, Quadir GA. Multi-response optimization of Wire electrical discharge machining process parameters using Taguchi based Grey Relational Analysis. Procedia Materials Science (2014), 6:1683-1695.

DOI: 10.1016/j.mspro.2014.07.154

Google Scholar

[25] P. Sivaprakasan, P. Hariharan, S. Gowri, Modeling and analysis of micro-WEDM process of Titanium alloy(Ti-6Al-4V) using response surface approach, Engg. Sci and Tech, 17 (2014) 227-235.

DOI: 10.1016/j.jestch.2014.06.004

Google Scholar

[26] K. P. Somashekhar, Jose Mathew, N. Ramachandran, Optimization of Material Removal Rate in Micro-EDM using Artificial Neural Network and Genetic Algorithms, Materials and Manufacturing Process,25 (2010), 467-475.

DOI: 10.1080/10426910903365760

Google Scholar

[27] A.S. Shivade , V. D. Shinde, Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & Grey relational analysis, J IndEngInt (2014).

DOI: 10.1007/s40092-014-0081-7

Google Scholar

[28] Dabade U. A. Multi-objective process optimization to improve surface integrity on the turned surface of Al/SiCp metal matrix composites using grey relational analysis. Manufacturing systems (2013),7:299-304.

DOI: 10.1016/j.procir.2013.05.051

Google Scholar

[29] M. Durairaja, D. Sudharsunb, N. Swamynathan, Analysis of Process Parameters in Wire EDM with Stainless Steel using Single Objective Taguchi Method and Multi-Objective Grey Relational Grade, Procedia Engineering 64 ( 2013 ) 868 – 877.

DOI: 10.1016/j.proeng.2013.09.163

Google Scholar

[30] T. Geethapriyan, K. Kalaichelvan, T. Muthuramalingam, Multi performance optimization of electrochemical micro-machining process surface related parameterson machining Inconel 718 using Taguchi-grey relational analysis, Trattamenti superficiali, 4 (2016).

DOI: 10.1016/j.procir.2016.03.133

Google Scholar

[31] Sampath Kumar T., R. Ramanujam, M. Vignesh, N. Tamiloli, Nishant Sharma,Shivam Srivastava, Akash Patel, Comparative evaluation of performances of TiAlN, AlCrN, TiAlN/AlCrNcoated carbide cutting tools and uncoated carbide cutting tools onturning Inconel 825 alloy using Grey Relational Analysis, Sensors and Actuators A: Physical, 279 (2018).

DOI: 10.1016/j.sna.2018.06.041

Google Scholar

[32] Deng, J. L., Introduction to Grey system theory. Journal of Grey Systems (1989) 1, 1-24.

Google Scholar

[33] Tzeng C. J., Lin Y. H., Yang Y. K., Jeng M. C., Optimization of turning operation with multiple performance characteristics using the Taguchi method and Grey relational analysis. Journal of materials processing technology 209 (2009). 2753–2759.

DOI: 10.1016/j.jmatprotec.2008.06.046

Google Scholar