[1]
Y. Kaynak, H.E. Karaca, R.D. Noebe, I.S. Jawahir, Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: A comparison of tool-wear performance with dry and MQL machining, Wear. 306(2013), pp.51-63.
DOI: 10.1016/j.wear.2013.05.011
Google Scholar
[2]
M. Manjaiah,S. Narendranath , S. Basavarajappa, Review on non- conventional machining of shape memory alloy, Trans. Nonferrous Met.Soc.China. 24 (2014), pp.12-21.
DOI: 10.1016/s1003-6326(14)63022-3
Google Scholar
[3]
H.C. Lin, K.M. Lin, Y.C. Chen, A study on the machining of TiNi shape memory alloys, Journal of Materials Processing Technology. 105 (2000),pp.327-332.
DOI: 10.1016/s0924-0136(00)00656-7
Google Scholar
[4]
K. Weinert, V.Petzoldt, Machining of NiTi based shape memory alloys, Materials Science and Engineering.378 (2004), pp.180-184.
DOI: 10.1016/j.msea.2003.10.344
Google Scholar
[5]
M.P. Jahan, Y.S. Wong, M. Rahman, A study on the quality micro-hole machining of Tungsten Carbide by micro-EDM process using Transistor and RC-type pulse Generator, Journal of Materials Processing Technology, 209 (2009) 1706–1716.
DOI: 10.1016/j.jmatprotec.2008.04.029
Google Scholar
[6]
M.P. Jahan, M. Rahman, Y.S. Wong, A review on the conventional and micro-electro-discharge machining of tungsten carbide. International Journal of Machine Tool & Manufacture, 51 (2011) 837–858.
DOI: 10.1016/j.ijmachtools.2011.08.016
Google Scholar
[7]
P. Sivaprakasam, P. Hariharan, S. Gowri, Modeling and analysis of micro-WEDM process of titanium alloy (Tie6Ale4V) using response surface approach, Materials Science and Engineering.,17 (2014) 227-235.
DOI: 10.1016/j.jestch.2014.06.004
Google Scholar
[8]
Scott F. Miller, Chen-C. Kao, Albert J. Shih, and Jun Qu, Investigation of wire electrical discharge machining of thin cross sections and compliant mechanisms, International journal of machine tools & manufacture, 45( 2005), PP 1717-1725.
DOI: 10.1016/j.ijmachtools.2005.03.003
Google Scholar
[9]
M. Rahman, H.S. Lim, K.S. Neo, A. Senthil Kumar, Y.S. Wong, X.P. Li, Tool-based nano finishing and micromachining, Journal of Materials Processing Technology, 185 (2007) 2–16.
DOI: 10.1016/j.jmatprotec.2006.03.121
Google Scholar
[10]
P.A. Shiva, K. T. Mannan, K. Arkanti, Parametric Optimization in Wire Electrical Discharge Machining of Titanium Alloy Using Response Surface Methodology, Materials Today:Proceeding. 4 (2017), pp.1434-1441.
DOI: 10.1016/j.matpr.2017.01.165
Google Scholar
[11]
PreetamSelmokar, Sujit Pardeshi, Experimental Investigation for Difficult-to-Machine Materials Using Micro-WEDM,IJRMET Vol. 4(2014), 178-181.
Google Scholar
[12]
T.U. Siddique, J. Ramkumar, Micro-wire electric discharge machining of Mg alloy used in biodegradable orthopedic implants, Materials Today: Proceedings 4 (2017) 10273-10277.
DOI: 10.1016/j.matpr.2017.06.363
Google Scholar
[13]
K. P. Somashekhar, Jose Mathew, N. Ramachandran, A flesibility approach by simulated annealing on optimization of micro-wire electric discharge parameters, Int J Adv ManufTechnol (2012) 61:1209-1213.
DOI: 10.1007/s00170-012-4096-1
Google Scholar
[14]
Di Shichun, Chu Xuyang, Wei Dongbo, Wang Zhenlong, Chi Guanxin, Liu Yuan, Analysis of kerf width in micro-WEDM, International Journal of Machine Tools & Manufacture 49 (2009), 788–792.
DOI: 10.1016/j.ijmachtools.2009.04.006
Google Scholar
[15]
Saini, V. K., Khan, Z. A., Siddiquee, A. N., Optimization of Wire Electric Discharge Machining of Composite Material (AL6061/SICP) Using Taguchi Method. Journal of Mechanical and Production Engineering 2(2013), 2315-4489.
Google Scholar
[16]
Rao, S., Ramji, K., Satyanarayana, B., Prediction of material removal rate of Aluminum BIS-24345 alloy. International Journal of Engineering Science and Technology 2(2010), 7729-7739.
Google Scholar
[17]
Lin CL, Lin JL, Ko TC. Optimization of the WEDM process based on the orthogonal array with Fuzzy logic and grey relational analysis method. Advanced manufacturing technology (2002), 19:271-277.
DOI: 10.1007/s001700200034
Google Scholar
[18]
K. P. Somashekhar, J. Mathew, N. Ramachandran, Multi-objective optimization of micro wire electric discharge machining parameters using grey relational analysis with Taguchi method, Proc. IMechE Vol. 225 part C: J. Mechanical Engg Science (2011).
DOI: 10.1177/0954406211400553
Google Scholar
[19]
A. Ramamurthy, R. Sivaramakrishnan, T. Muthuramalingam, Taguchi-Grey computation methodology for optimum multiple performance measures on machining titanium alloy in WEDM process, Indian Journal of Engineering & Materials Sciences, 22 (2015).
DOI: 10.4028/www.scientific.net/amm.766-767.861
Google Scholar
[20]
Sharma P., Bhambri K., Multi-Response Optimization by Experimental Investigation of Machining Parameters in CNC Turning by Taguchi Based Grey Relational Analysis. International Journal of Engineering Research and Applications 2(2012), 1594-1602.
DOI: 10.21884/ijmter.2017.4034.ppsjd
Google Scholar
[21]
J.B. Saedon, Norkamal Jaafar, Mohd Azman Yahaya, NorHayati Saad, Mohd Shahir Kasim, Multi-objective optimization of titanium alloy through orthogonal array and grey relational analysis in WEDM, Procedia Technology, 15 ( 2014 ) 833 – 841.
DOI: 10.1016/j.protcy.2014.09.057
Google Scholar
[22]
K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni based shape memory alloys, Progress in Materials Science (2005), 50. 5, pp.511-678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[23]
M. S. Rasheed, Mustufa H. Abidi,,Abdulaziz M. El-Tamimi, and A. M. Al-Ahmari, Investigation of Micro-EDM input Parameters on Various Outputs in Machining Ni-Ti Shape Memory Alloy Using Full Factorial Design,Advanced Materials Research Vols. 816-817 (2013).
DOI: 10.4028/www.scientific.net/amr.816-817.173
Google Scholar
[24]
Zahid AK, Arshad AS, Noor ZK, Urfi K, Quadir GA. Multi-response optimization of Wire electrical discharge machining process parameters using Taguchi based Grey Relational Analysis. Procedia Materials Science (2014), 6:1683-1695.
DOI: 10.1016/j.mspro.2014.07.154
Google Scholar
[25]
P. Sivaprakasan, P. Hariharan, S. Gowri, Modeling and analysis of micro-WEDM process of Titanium alloy(Ti-6Al-4V) using response surface approach, Engg. Sci and Tech, 17 (2014) 227-235.
DOI: 10.1016/j.jestch.2014.06.004
Google Scholar
[26]
K. P. Somashekhar, Jose Mathew, N. Ramachandran, Optimization of Material Removal Rate in Micro-EDM using Artificial Neural Network and Genetic Algorithms, Materials and Manufacturing Process,25 (2010), 467-475.
DOI: 10.1080/10426910903365760
Google Scholar
[27]
A.S. Shivade , V. D. Shinde, Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & Grey relational analysis, J IndEngInt (2014).
DOI: 10.1007/s40092-014-0081-7
Google Scholar
[28]
Dabade U. A. Multi-objective process optimization to improve surface integrity on the turned surface of Al/SiCp metal matrix composites using grey relational analysis. Manufacturing systems (2013),7:299-304.
DOI: 10.1016/j.procir.2013.05.051
Google Scholar
[29]
M. Durairaja, D. Sudharsunb, N. Swamynathan, Analysis of Process Parameters in Wire EDM with Stainless Steel using Single Objective Taguchi Method and Multi-Objective Grey Relational Grade, Procedia Engineering 64 ( 2013 ) 868 – 877.
DOI: 10.1016/j.proeng.2013.09.163
Google Scholar
[30]
T. Geethapriyan, K. Kalaichelvan, T. Muthuramalingam, Multi performance optimization of electrochemical micro-machining process surface related parameterson machining Inconel 718 using Taguchi-grey relational analysis, Trattamenti superficiali, 4 (2016).
DOI: 10.1016/j.procir.2016.03.133
Google Scholar
[31]
Sampath Kumar T., R. Ramanujam, M. Vignesh, N. Tamiloli, Nishant Sharma,Shivam Srivastava, Akash Patel, Comparative evaluation of performances of TiAlN, AlCrN, TiAlN/AlCrNcoated carbide cutting tools and uncoated carbide cutting tools onturning Inconel 825 alloy using Grey Relational Analysis, Sensors and Actuators A: Physical, 279 (2018).
DOI: 10.1016/j.sna.2018.06.041
Google Scholar
[32]
Deng, J. L., Introduction to Grey system theory. Journal of Grey Systems (1989) 1, 1-24.
Google Scholar
[33]
Tzeng C. J., Lin Y. H., Yang Y. K., Jeng M. C., Optimization of turning operation with multiple performance characteristics using the Taguchi method and Grey relational analysis. Journal of materials processing technology 209 (2009). 2753–2759.
DOI: 10.1016/j.jmatprotec.2008.06.046
Google Scholar