p.1
p.40
p.80
p.91
p.102
p.112
p.122
p.129
Retracted: Development of Bulk Metallic Glass Matrix Composites (BMGMC) by Additive Manufacturing: Modelling and Simulation – A Review: Part B
Retracted:
Abstract:
. Bulk metallic glasses (BMGs) and their composites (BMGMC) have emerged as competitive materials for structural engineering applications exhibiting superior tensile strength, hardness along with very high elastic strain limit. However, they suffer from a lack of ductility and subsequent low toughness due to the inherent brittleness of the glassy structure which render them to failure without appreciable yielding owing to mechanisms of rapid movement of shear bands all throughout the volume of the material. This severely limits their use in the manufacture of structural engineering parts. Various theories and mechanisms have been proposed to counter this effect. Introduction of secondary ductile phase in the form of in-situ nucleating and growing dendrites from melt during solidification have proved out to be best solution of this problem. Nucleation and growth of these ductile phases have been extensively studied over the last 16 years since their introduction for the first time in Zr-based BMGMC by Prof. Johnson at Caltech. Data about almost all types of phases appearing in different systems have been successfully reported. However, there is very little information available about the precise mechanism underlying their nucleation and growth during solidification in a copper mould during conventional vacuum casting and melt pool of additively manufactured parts. Various routes have been proposed to study this including experiments in microgravity, levitation in synchrotron light and modelling and simulation. In this report, which is Part B of two parts comprehensive overview, state of the art of development, manufacturing, characterisation and modelling and simulation of BMGMCs is described in detail. Evolution of microstructure in BMGMC during additive manufacturing have been presented with the aim to address fundamental problem of lack in ductility along with prediction of grain size and phase evolution with the help of advanced modelling and simulation techniques. It has been systematically proposed that 2 and 3 dimensional cellular automaton method combined with finite element (CAFE) tools programmed on MATLAB® and simulated on Ansys® would best be able to describe this phenomenon in most efficient way. Present part B focuses on methodology by which modelling and simulation can be adopted and applied to describe evolution of microstructure in this complex class of materials.
Info:
Periodical:
Pages:
40-79
Online since:
June 2019
Permissions:
Citation:
* - Corresponding Author
[1] Chen, H.S., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): pp.1505-1511.
[2] Greer, A.L., Metallic Glasses. Science, 1995. 267(5206): pp.1947-1953.
[3] Güntherodt, H.J., Metallic glasses, in Festkörperprobleme 17: Plenary Lectures of the Divisions Semiconductor Physics" "Metal Physics" "Low Temperature Physics" "Thermodynamics and Statistical Physics" "Crystallography" "Magnetism" "Surface Physics, of the German Physical Society Münster, March 7–12, 1977, J. Treusch, Editor. 1977, Springer Berlin Heidelberg: Berlin, Heidelberg. pp.25-53.
DOI: 10.1007/bfb0108599
[4] Inoue, A., High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates (<I>Overview</I>). Materials Transactions, JIM, 1995. 36(7): pp.866-875.
[5] Johnson, W.L., Bulk Glass-Forming Metallic Alloys: Science and Technology. MRS Bulletin, 1999. 24(10): pp.42-56.
[6] Matthieu, M., Relaxation and physical aging in network glasses: a review. Reports on Progress in Physics, 2016. 79(6): p.066504.
[7] Hofmann, D.C. and W.L. Johnson. Improving Ductility in Nanostructured Materials and Metallic Glasses:Three Laws,. in Materials Science Forum. 2010. Trans Tech Publ.
[8] Shi, Y. and M.L. Falk, Does metallic glass have a backbone? The role of percolating short range order in strength and failure. Scripta Materialia, 2006. 54(3): pp.381-386.
[9] Mattern, N., et al., Short-range order of Cu–Zr metallic glasses. Journal of Alloys and Compounds, 2009. 485(1–2): pp.163-169.
[10] Jiang, M.Q. and L.H. Dai, Short-range-order effects on intrinsic plasticity of metallic glasses. Philosophical Magazine Letters, 2010. 90(4): pp.269-277.
[11] Zhang, F., et al., Composition-dependent stability of the medium-range order responsible for metallic glass formation. Acta Materialia, 2014. 81: pp.337-344.
[12] Sheng, H.W., et al., Atomic packing and short-to-medium-range order in metallic glasses. Nature, 2006. 439(7075): pp.419-425.
DOI: 10.1038/nature04421
[13] Cheng, Y.Q., E. Ma, and H.W. Sheng, Atomic Level Structure in Multicomponent Bulk Metallic Glass. Physical Review Letters, 2009. 102(24): p.245501.
[14] Inoue, A. and A. Takeuchi, Recent development and application products of bulk glassy alloys. Acta Materialia, 2011. 59(6): pp.2243-2267.
[15] Nelson, D.R., Order, frustration, and defects in liquids and glasses. Physical Review B, 1983. 28(10): pp.5515-5535.
[16] Ma, E., Tuning order in disorder. Nat Mater, 2015. 14(6): pp.547-552.
[17] Greer, A.L., Confusion by design. Nature, 1993. 366(6453): pp.303-304.
[18] Drehman, A.J., A.L. Greer, and D. Turnbull, Bulk formation of a metallic glass: Pd40Ni40P20. Applied Physics Letters, 1982. 41(8): pp.716-717.
DOI: 10.1063/1.93645
[19] Kui, H.W., A.L. Greer, and D. Turnbull, Formation of bulk metallic glass by fluxing. Applied Physics Letters, 1984. 45(6): pp.615-616.
DOI: 10.1063/1.95330
[20] Nishiyama, N., et al., The world's biggest glassy alloy ever made. Intermetallics, 2012. 30: pp.19-24.
[21] Qiao, J., H. Jia, and P.K. Liaw, Metallic glass matrix composites. Materials Science and Engineering: R: Reports, 2016. 100: pp.1-69.
[22] Klement, W., R.H. Willens, and P.O.L. Duwez, Non-crystalline Structure in Solidified Gold-Silicon Alloys. Nature, 1960. 187(4740): pp.869-870.
DOI: 10.1038/187869b0
[23] Chen, H.S., Glassy metals. Reports on Progress in Physics, 1980. 43(4): p.353.
[24] Turnbull, D., Under what conditions can a glass be formed? Contemporary Physics, 1969. 10(5): pp.473-488.
[25] Akhtar, D., B. Cantor, and R.W. Cahn, Diffusion rates of metals in a NiZr2 metallic glass. Scripta Metallurgica, 1982. 16(4): pp.417-420.
[26] Akhtar, D., B. Cantor, and R.W. Cahn, Measurements of diffusion rates of Au in metal-metal and metal-metalloid glasses. Acta Metallurgica, 1982. 30(8): pp.1571-1577.
[27] Akhtar, D. and R.D.K. Misra, Impurity diffusion in a NiNb metallic glass. Scripta Metallurgica, 1985. 19(5): pp.603-607.
[28] Inoue, A., T. Zhang, and T. Masumoto, Glass-forming ability of alloys. Journal of Non-Crystalline Solids, 1993. 156: pp.473-480.
[29] Lu, Z.P., Y. Liu, and C.T. Liu, Evaluation Of Glass-Forming Ability, in Bulk Metallic Glasses, M. Miller and P. Liaw, Editors. 2008, Springer US: Boston, MA. pp.87-115.
[30] Yi, J., et al., Glass-Forming Ability and Crystallization Behavior of Al86Ni9La5 Metallic Glass with Si Addition Advanced Engineering Materials, 2016. 18(6): pp.972-977.
[31] Wang, L.-M., et al., A universal, criterion for metallic glass formation. Applied Physics Letters, 2012. 100(26): p.261913.
DOI: 10.1063/1.4731881
[32] Donald, I.W. and H.A. Davies, Prediction of glass-forming ability for metallic systems. Journal of Non-Crystalline Solids, 1978. 30(1): pp.77-85.
[33] Park, E.S. and D.H. Kim, Design of Bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review. Metals and Materials International, 2005. 11(1): pp.19-27.
DOI: 10.1007/bf03027480
[34] Chen, M., A brief overview of bulk metallic glasses. NPG Asia Mater, 2011. 3: pp.82-90.
[35] Park, E.S., H.J. Chang, and D.H. Kim, Effect of addition of Be on glass-forming ability, plasticity and structural change in Cu–Zr bulk metallic glasses. Acta Materialia, 2008. 56(13): pp.3120-3131.
[36] Guo, G.-Q., S.-Y. Wu, and L. Yang, Structural Origin of the Enhanced Glass-Forming Ability Induced by Microalloying Y in the ZrCuAl Alloy. Metals, 2016. 6(4): p.67.
DOI: 10.3390/met6040067
[37] Cheng, Y.Q., E. Ma, and H.W. Sheng, Alloying strongly influences the structure, dynamics, and glass forming ability of metallic supercooled liquids. Applied Physics Letters, 2008. 93(11): p.111913.
DOI: 10.1063/1.2987727
[38] Jia, P., et al., A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Materialia, 2006. 54(12): pp.2165-2168.
[39] Miracle, D.B., et al., An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability. International Materials Reviews, 2010. 55(4): pp.218-256.
[40] Peker, A. and W.L. Johnson, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters, 1993. 63(17): pp.2342-2344.
DOI: 10.1063/1.110520
[41] Lu, Z.P. and C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): pp.3501-3512.
[42] Lu, Z.P. and C.T. Liu, A new approach to understanding and measuring glass formation in bulk amorphous materials. Intermetallics, 2004. 12(10–11): pp.1035-1043.
[43] Li, Y., et al., Glass forming ability of bulk glass forming alloys. Scripta Materialia, 1997. 36(7): pp.783-787.
[44] Kim, Y.C., et al., Glass forming ability and crystallization behavior of Ti-based amorphous alloys with high specific strength. Journal of Non-Crystalline Solids, 2003. 325(1–3): pp.242-250.
[45] Wu, J., et al., New insight on glass-forming ability and designing Cu-based bulk metallic glasses: The solidification range perspective. Materials & Design, 2014. 61: pp.199-202.
[46] Shen, T.D., B.R. Sun, and S.W. Xin, Effects of metalloids on the thermal stability and glass forming ability of bulk ferromagnetic metallic glasses. Journal of Alloys and Compounds, 2015. 631: pp.60-66.
[47] Li, P., et al., Glass forming ability, thermodynamics and mechanical properties of novel Ti–Cu–Ni–Zr–Hf bulk metallic glasses. Materials & Design, 2014. 53: pp.145-151.
[48] Li, P., et al., Glass forming ability and thermodynamics of new Ti-Cu-Ni-Zr bulk metallic glasses. Journal of Non-Crystalline Solids, 2012. 358(23): pp.3200-3204.
[49] Li, F., et al., Structural origin underlying poor glass forming ability of Al metallic glass. Journal of Applied Physics, 2011. 110(1): p.013519.
DOI: 10.1063/1.3605510
[50] Fan, C., et al., Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr–Ni–Cu–Al metallic glasses. Applied Physics Letters, 2001. 79(7): pp.1024-1026.
DOI: 10.1063/1.1391396
[51] Yang, H., K.Y. Lim, and Y. Li, Multiple maxima in glass-forming ability in Al–Zr–Ni system. Journal of Alloys and Compounds, 2010. 489(1): pp.183-187.
[52] Xu, D., G. Duan, and W.L. Johnson, Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper. Physical Review Letters, 2004. 92(24): p.245504.
[53] Zhang, K., et al., Computational studies of the glass-forming ability of model bulk metallic glasses. The Journal of Chemical Physics, 2013. 139(12): p.124503.
DOI: 10.1063/1.4821637
[54] Amokrane, S., A. Ayadim, and L. Levrel, Structure of the glass-forming metallic liquids by ab-initio and classical molecular dynamics, a case study: Quenching the Cu60Ti20Zr20 alloy. Journal of Applied Physics, 2015. 118(19): p.194903.
DOI: 10.1063/1.4935876
[55] Inoue, A. and A. Takeuchi, Bulk Amorphous, Nano-Crystalline and Nano-Quasicrystalline Alloys IV. Recent Progress in Bulk Glassy Alloys. Materials Transactions, 2002. 43(8): pp.1892-1906.
[56] Inoue, A., B. Shen, and A. Takeuchi, Developments and Applications of Bulk Glassy Alloys in Late Transition Metal Base System. MATERIALS TRANSACTIONS, 2006. 47(5): pp.1275-1285.
[57] Weinberg, M.C., et al., Critical cooling rate calculations for glass formation. Journal of Non-Crystalline Solids, 1990. 123(1): pp.90-96.
[58] Ray, C.S., et al., A new DTA method for measuring critical cooling rate for glass formation. Journal of Non-Crystalline Solids, 2005. 351(16–17): pp.1350-1358.
[59] Kim, J.-H., et al., Estimation of critical cooling rates for glass formation in bulk metallic glasses through non-isothermal thermal analysis. Metals and Materials International, 2005. 11(1): pp.1-9.
DOI: 10.1007/bf03027478
[60] Zhu, D.M., et al. Method for estimating the critical cooling rate for glass formation from isothermal TTT data. in Key Engineering Materials. 2007. Trans Tech Publ.
[61] Weinberg, M.C., D.R. Uhlmann, and E.D. Zanotto, Nose Method, of Calculating Critical Cooling Rates for Glass Formation. Journal of the American Ceramic Society, 1989. 72(11): pp.2054-2058.
[62] Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000. 48(1): pp.279-306.
[63] Wang, D., et al., Bulk metallic glass formation in the binary Cu–Zr system. Applied Physics Letters, 2004. 84(20): pp.4029-4031.
DOI: 10.1063/1.1751219
[64] Lee, D.M., et al., A deep eutectic point in quaternary Zr–Ti–Ni–Cu system and bulk metallic glass formation near the eutectic point. Intermetallics, 2012. 21(1): pp.67-74.
[65] Ma, D., et al., Correlation between Glass Formation and Type of Eutectic Coupled Zone in Eutectic Alloys. MATERIALS TRANSACTIONS, 2003. 44(10): pp.2007-2010.
[66] Jian, X., Complete Composition Tunability of Cu (Ni)-Ti-Zr Alloys for Bulk Metallic Glass Formation.
[67] Ma, H., et al., Doubling the Critical Size for Bulk Metallic Glass Formation in the Mg–Cu–Y Ternary System. Journal of Materials Research, 2011. 20(9): pp.2252-2255.
[68] Lu, Z.P. and C.T. Liu, Glass Formation Criterion for Various Glass-Forming Systems. Physical Review Letters, 2003. 91(11): p.115505.
[69] Lad, K.N., Correlation between atomic-level structure, packing efficiency and glass-forming ability in Cu–Zr metallic glasses. Journal of Non-Crystalline Solids, 2014. 404: pp.55-60.
[70] Mukherjee, S., et al., Overheating threshold and its effect on time–temperature-transformation diagrams of zirconium based bulk metallic glasses. Applied Physics Letters, 2004. 84(24): pp.5010-5012.
DOI: 10.1063/1.1763219
[71] Brazhkin, V.V., Metastable phases and metastable, phase diagrams. Journal of Physics: Condensed Matter, 2006. 18(42): p.9643.
[72] Baricco, M., et al., Metastable phases and phase diagrams. La Metallurgia Italiana, 2004(11).
[73] Brazhkin, V.V., Metastable phases, phase transformations, and phase diagrams in physics and chemistry. Physics-Uspekhi, 2006. 49(7): pp.719-724.
[74] Taub, A.I. and F. Spaepen, The kinetics of structural relaxation of a metallic glass. Acta Metallurgica, 1980. 28(12): pp.1781-1788.
[75] Tsao, S.S. and F. Spaepen, Structural relaxation of a metallic glass near equilibrium. Acta Metallurgica, 1985. 33(5): pp.881-889.
[76] Akhtar, D. and R.D.K. Misra, Effect of thermal relaxation on diffusion in a metallic glass. Scripta Metallurgica, 1986. 20(5): pp.627-631.
[77] Qiao, J.C. and J.M. Pelletier, Dynamic Mechanical Relaxation in Bulk Metallic Glasses: A Review. Journal of Materials Science & Technology, 2014. 30(6): pp.523-545.
[78] Liu, C., E. Pineda, and D. Crespo, Mechanical Relaxation of Metallic Glasses: An Overview of Experimental Data and Theoretical Models. Metals, 2015. 5(2): p.1073.
DOI: 10.3390/met5021073
[79] Wen, P., et al., Mechanical relaxation in supercooled liquids of bulk metallic glasses. physica status solidi (a), 2010. 207(12): pp.2693-2703.
[80] Levine, D. and P.J. Steinhardt, Proceedings of the international conference on the theory of the structures of non-crystalline solids Quasicrystals. Journal of Non-Crystalline Solids, 1985. 75(1): pp.85-89.
[81] Steinhardt, P.J., Quasicrystals: a new form of matter. Endeavour, 1990. 14(3): pp.112-116.
[82] Janot, C., The structure of quasicrystals. Journal of Non-Crystalline Solids, 1993. 156: pp.852-864.
[83] Xing, L.Q., et al., Effect of cooling rate on the precipitation of quasicrystals from the Zr–Cu–Al–Ni–Ti amorphous alloy. Applied Physics Letters, 1998. 73(15): pp.2110-2112.
DOI: 10.1063/1.122394
[84] Xing, L.Q., et al., High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr–Ti–Cu–Ni–Al amorphous alloys. Applied Physics Letters, 1999. 74(5): pp.664-666.
DOI: 10.1063/1.122980
[85] Guo, S.F., et al., Fe-based bulk metallic glasses: Brittle or ductile? Applied Physics Letters, 2014. 105(16): p.161901.
DOI: 10.1063/1.4899124
[86] Gu, X.J., S.J. Poon, and G.J. Shiflet, Mechanical properties of iron-based bulk metallic glasses. Journal of Materials Research, 2007. 22(02): pp.344-351.
[87] Schuh, C.A., T.C. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Materialia, 2007. 55(12): pp.4067-4109.
[88] Xi, X.K., et al., Fracture of Brittle Metallic Glasses: Brittleness or Plasticity. Physical Review Letters, 2005. 94(12): p.125510.
[89] Chen, T.-H. and C.-K. Tsai, The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions. Materials, 2015. 8(4): p.1831.
DOI: 10.3390/ma8041831
[90] Xue, Y.F., et al., Deformation and failure behavior of a hydrostatically extruded Zr38Ti17Cu10.5Co12Be22.5 bulk metallic glass/porous tungsten phase composite under dynamic compression. Composites Science and Technology, 2008. 68(15–16): pp.3396-3400.
[91] Chen, H.S., Plastic flow in metallic glasses under compression. Scripta Metallurgica, 1973. 7(9): pp.931-935.
[92] Flores, K.M. and R.H. Dauskardt, Fracture and deformation of bulk metallic glasses and their composites. Intermetallics, 2004. 12(7–9): pp.1025-1029.
[93] Hofmann, D.C., et al., Designing metallic glass matrix composites with high toughness and tensile ductility. Nature, 2008. 451(7182): pp.1085-1089.
DOI: 10.1038/nature06598
[94] Lowhaphandu, P. and J.J. Lewandowski, Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scripta Materialia, 1998. 38(12): pp.1811-1817.
[95] Lowhaphandu, P., et al., Deformation and fracture toughness of a bulk amorphous Zr–Ti–Ni–Cu–Be alloy. Intermetallics, 2000. 8(5–6): pp.487-492.
[96] Conner, R.D., et al., Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scripta Materialia, 1997. 37(9): pp.1373-1378.
[97] Gilbert, C.J., R.O. Ritchie, and W.L. Johnson, Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Applied Physics Letters, 1997. 71(4): pp.476-478.
DOI: 10.1063/1.119610
[98] Xu, J., U. Ramamurty, and E. Ma, The fracture toughness of bulk metallic glasses. JOM, 2010. 62(4): pp.10-18.
[99] Kimura, H. and T. Masumoto, Fracture toughness of amorphous metals. Scripta Metallurgica, 1975. 9(3): pp.211-221.
[100] Chen, M., Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility. Annual Review of Materials Research, 2008. 38(1): pp.445-469.
[101] Hufnagel, T.C., C.A. Schuh, and M.L. Falk, Deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Materialia, 2016. 109: pp.375-393.
[102] Sarac, B. and J. Schroers, Designing tensile ductility in metallic glasses. Nature Communications, 2013. 4: p.2158.
DOI: 10.1038/ncomms3158
[103] Ritchie, R.O., The conflicts between strength and toughness. Nat Mater, 2011. 10(11): pp.817-822.
[104] Wada, T., A. Inoue, and A.L. Greer, Enhancement of room-temperature plasticity in a bulk metallic glass by finely dispersed porosity. Applied Physics Letters, 2005. 86(25): p.251907.
DOI: 10.1063/1.1953884
[105] Donovan, P.E. and W.M. Stobbs, Shear band interactions with crystals in partially crystallised metallic glasses. Journal of Non-Crystalline Solids, 1983. 55(1): pp.61-76.
[106] Leng, Y. and T.H. Courtney, Multiple shear band formation in metallic glasses in composites. Journal of Materials Science, 1991. 26(3): pp.588-592.
DOI: 10.1007/bf00588291
[107] Liu, L.F., et al., Behavior of multiple shear bands in Zr-based bulk metallic glass. Materials Chemistry and Physics, 2005. 93(1): pp.174-177.
[108] Huang, R., et al., Inhomogeneous deformation in metallic glasses. Journal of the Mechanics and Physics of Solids, 2002. 50(5): pp.1011-1027.
[109] Spaepen, F., A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977. 25(4): pp.407-415.
[110] Steif, P.S., F. Spaepen, and J.W. Hutchinson, Strain localization in amorphous metals. Acta Metallurgica, 1982. 30(2): pp.447-455.
[111] Flores, K.M., Structural changes and stress state effects during inhomogeneous flow of metallic glasses. Scripta Materialia, 2006. 54(3): pp.327-332.
[112] Donovan, P.E. and W.M. Stobbs, The structure of shear bands in metallic glasses. Acta Metallurgica, 1981. 29(8): pp.1419-1436.
[113] Li, N., W. Chen, and L. Liu, Thermoplastic Micro-Forming of Bulk Metallic Glasses: A Review. JOM, 2016. 68(4): pp.1246-1261.
[114] Sarac, B., et al., Three-Dimensional Shell Fabrication Using Blow Molding of Bulk Metallic Glass. Journal of Microelectromechanical Systems, 2011. 20(1): pp.28-36.
[115] Schroers, J., The superplastic forming of bulk metallic glasses. JOM, 2005. 57(5): pp.35-39.
[116] Dandliker, R.B., R.D. Conner, and W.L. Johnson, Melt infiltration casting of bulk metallic-glass matrix composites. Journal of Materials Research, 1998. 13(10): pp.2896-2901.
[117] Choi-Yim, H., et al., Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Materialia, 2002. 50(10): pp.2737-2745.
[118] Jiang, Y. and K. Qiu, Computational micromechanics analysis of toughening mechanisms of particle-reinforced bulk metallic glass composites. Materials & Design (1980-2015), 2015. 65: pp.410-416.
[119] Sun, Y.F., et al., Formation, thermal stability and deformation behavior of graphite-flakes reinforced Cu-based bulk metallic glass matrix composites. Materials Science and Engineering: A, 2006. 435–436: pp.132-138.
[120] Conner, R.D., R.B. Dandliker, and W.L. Johnson, Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Materialia, 1998. 46(17): pp.6089-6102.
[121] Lee, K., et al., Direct observation of microfracture process in metallic-continuous-fiber-reinforced amorphous matrix composites fabricated by liquid pressing process. Materials Science and Engineering: A, 2010. 527(4–5): pp.941-946.
[122] Wadhwa, P., J. Heinrich, and R. Busch, Processing of copper fiber-reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass composites. Scripta Materialia, 2007. 56(1): pp.73-76.
[123] Cytron, S.J., A metallic glass-metal matrix composite. Journal of Materials Science Letters, 1982. 1(5): pp.211-213.
[124] Deng, S.T., et al., Metallic glass fiber-reinforced Zr-based bulk metallic glass. Scripta Materialia, 2011. 64(1): pp.85-88.
[125] Wang, Z., et al., Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Scientific Reports, 2016. 6: p.24384.
[126] Jiang, J.-Z., et al., Low-Density High-Strength Bulk Metallic Glasses and Their Composites: A Review. Advanced Engineering Materials, 2015. 17(6): pp.761-780.
[127] Qiao, J., In-situ Dendrite/Metallic Glass Matrix Composites: A Review. Journal of Materials Science & Technology, 2013. 29(8): pp.685-701.
[128] Zhai, H., H. Wang, and F. Liu, A strategy for designing bulk metallic glass composites with excellent work-hardening and large tensile ductility. Journal of Alloys and Compounds, 2016. 685: pp.322-330.
[129] Freed, R.L. and J.B. Vander Sande, The effects of devitrification on the mechanical properties of Cu46Zr54 metallic glass. Metallurgical Transactions A, 1979. 10(11): pp.1621-1626.
DOI: 10.1007/bf02811693
[130] Greer, A.L., Y.Q. Cheng, and E. Ma, Shear bands in metallic glasses. Materials Science and Engineering: R: Reports, 2013. 74(4): pp.71-132.
[131] Gludovatz, B., et al., Size-dependent fracture toughness of bulk metallic glasses. Acta Materialia, 2014. 70: pp.198-207.
[132] Ogata, S., et al., Atomistic simulation of shear localization in Cu–Zr bulk metallic glass. Intermetallics, 2006. 14(8–9): pp.1033-1037.
[133] Packard, C.E. and C.A. Schuh, Initiation of shear bands near a stress concentration in metallic glass. Acta Materialia, 2007. 55(16): pp.5348-5358.
[134] Pampillo, C.A., Localized shear deformation in a glassy metal. Scripta Metallurgica, 1972. 6(10): pp.915-917.
[135] Zhou, M., A.J. Rosakis, and G. Ravichandran, On the growth of shear bands and failure-mode transition in prenotched plates: A comparison of singly and doubly notched specimens. International Journal of Plasticity, 1998. 14(4): pp.435-451.
[136] Pan, D., et al., Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proceedings of the National Academy of Sciences, 2008. 105(39): pp.14769-14772.
[137] Das, J., et al., ``Work-Hardenable'' Ductile Bulk Metallic Glass. Physical Review Letters, 2005. 94(20): p.205501.
[138] Schroers, J. and W.L. Johnson, Ductile Bulk Metallic Glass. Physical Review Letters, 2004. 93(25): p.255506.
[139] Jiang, W.H., et al., Ductility of a Zr-based bulk-metallic glass with different specimen's geometries. Materials Letters, 2006. 60(29–30): pp.3537-3540.
[140] Das, J., et al., Plasticity in bulk metallic glasses investigated via the strain distribution. Physical Review B, 2007. 76(9): p.092203.
[141] Chen, L.Y., et al., New Class of Plastic Bulk Metallic Glass. Physical Review Letters, 2008. 100(7): p.075501.
[142] Abdeljawad, F., M. Fontus, and M. Haataja, Ductility of bulk metallic glass composites: Microstructural effects. Applied Physics Letters, 2011. 98(3): p.031909.
DOI: 10.1063/1.3531660
[143] Magagnosc, D.J., et al., Tunable Tensile Ductility in Metallic Glasses. Scientific Reports, 2013. 3: p.1096.
[144] Lu, X.L., et al., Gradient Confinement Induced Uniform Tensile Ductility in Metallic Glass. Scientific Reports, 2013. 3: p.3319.
DOI: 10.1038/srep03319
[145] Yao, K.F., et al., Superductile bulk metallic glass. Applied Physics Letters, 2006. 88(12): p.122106.
DOI: 10.1063/1.2187516
[146] Hays, C.C., C.P. Kim, and W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing \textit{in situ} Formed Ductile Phase Dendrite Dispersions. Physical Review Letters, 2000. 84(13): pp.2901-2904.
[147] Song, K.K., et al., Strategy for pinpointing the formation of B2 CuZr in metastable CuZr-based shape memory alloys. Acta Materialia, 2011. 59(17): pp.6620-6630.
[148] Ding, J., et al., Large-sized CuZr-based Bulk Metallic Glass Composite with Enhanced Mechanical Properties. Journal of Materials Science & Technology, 2014. 30(6): pp.590-594.
[149] Jiang, F., et al., Microstructure evolution and mechanical properties of Cu46Zr47Al7 bulk metallic glass composite containing CuZr crystallizing phases. Materials Science and Engineering: A, 2007. 467(1–2): pp.139-145.
[150] Liu, J., et al., Microstructure and Compressive Properties of <I>In-Situ</I> Martensite CuZr Phase Reinforced ZrCuNiAl Metallic Glass Matrix Composite. MATERIALS TRANSACTIONS, 2010. 51(5): pp.1033-1037.
[151] Liu, Z., et al., Microstructural tailoring and improvement of mechanical properties in CuZr-based bulk metallic glass composites. Acta Materialia, 2012. 60(6–7): pp.3128-3139.
[152] Liu, Z.Q., et al., Microstructural percolation assisted breakthrough of trade-off between strength and ductility in CuZr-based metallic glass composites. Scientific Reports, 2014. 4: p.4167.
DOI: 10.1038/srep04167
[153] Pauly, S., et al., Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat Mater, 2010. 9(6): pp.473-477.
DOI: 10.1038/nmat2767
[154] Schryvers, D., et al., Unit cell determination in CuZr martensite by electron microscopy and X-ray diffraction. Scripta Materialia, 1997. 36(10): pp.1119-1125.
[155] Seo, J.W. and D. Schryvers, TEM investigation of the microstructure and defects of CuZr martensite. Part I: Morphology and twin systems. Acta Materialia, 1998. 46(4): pp.1165-1175.
[156] Seo, J.W. and D. Schryvers, TEM investigation of the microstructure and defects of CuZr martensite. Part II: Planar defects. Acta Materialia, 1998. 46(4): pp.1177-1183.
[157] Song, K., Synthesis, microstructure, and deformation mechanisms of CuZr-based bulk metallic glass composites. (2013).
[158] Song, K.K., et al., Correlation between the microstructures and the deformation mechanisms of CuZr-based bulk metallic glass composites. AIP Advances, 2013. 3(1): p.012116.
DOI: 10.1063/1.4789516
[159] Kim, D.H., et al., Phase separation in metallic glasses. Progress in Materials Science, 2013. 58(8): pp.1103-1172.
[160] Sun, L., et al., Phase Separation and Microstructure Evolution of Zr48Cu36Ag8Al8 Bulk Metallic Glass in the Supercooled Liquid Region. Rare Metal Materials and Engineering, 2016. 45(3): pp.567-570.
[161] Antonowicz, J., et al., Early stages of phase separation and nanocrystallization in Al-rare earth metallic glasses studied using SAXS/WAXS and HRTEM methods. Reviews on Advanced Materials Science, 2008. 18(5): pp.454-458.
[162] Park, B.J., et al., Phase Separating Bulk Metallic Glass: A Hierarchical Composite. Physical Review Letters, 2006. 96(24): p.245503.
[163] Kelton, K.F., A new model for nucleation in bulk metallic glasses. Philosophical Magazine Letters, 1998. 77(6): pp.337-344.
[164] Chang, H.J., et al., Synthesis of metallic glass composites using phase separation phenomena. Acta Materialia, 2010. 58(7): pp.2483-2491.
[165] Kündig, A.A., et al., In situ formed two-phase metallic glass with surface fractal microstructure. Acta Materialia, 2004. 52(8): pp.2441-2448.
[166] Oh, J.C., et al., Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Materialia, 2005. 53(2): pp.165-169.
[167] Park, E.S. and D.H. Kim, Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Materialia, 2006. 54(10): pp.2597-2604.
[168] Guo, G.-Q., et al., How Can Synchrotron Radiation Techniques Be Applied for Detecting Microstructures in Amorphous Alloys? Metals, 2015. 5(4): p. (2048).
DOI: 10.3390/met5042048
[169] Guo, G.-Q., et al., Detecting Structural Features in Metallic Glass via Synchrotron Radiation Experiments Combined with Simulations. Metals, 2015. 5(4): p. (2093).
DOI: 10.3390/met5042093
[170] Michalik, S., et al., Structural modifications of swift-ion-bombarded metallic glasses studied by high-energy X-ray synchrotron radiation. Acta Materialia, 2014. 80: pp.309-316.
[171] Mu, J., et al., In situ high-energy X-ray diffraction studies of deformation-induced phase transformation in Ti-based amorphous alloy composites containing ductile dendrites. Acta Materialia, 2013. 61(13): pp.5008-5017.
[172] Paradis, P.-F., et al., Materials properties measurements and particle beam interactions studies using electrostatic levitation. Materials Science and Engineering: R: Reports, 2014. 76: pp.1-53.
[173] Zu, F.-Q., Temperature-Induced Liquid-Liquid Transition in Metallic Melts: A Brief Review on the New Physical Phenomenon. Metals, 2015. 5(1): p.395.
DOI: 10.3390/met5010395
[174] Huang, Y.J., J. Shen, and J.F. Sun, Bulk metallic glasses: Smaller is softer. Applied Physics Letters, 2007. 90(8): p.081919.
DOI: 10.1063/1.2696502
[175] Oh, Y.S., et al., Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites. Acta Materialia, 2011. 59(19): pp.7277-7286.
[176] Kim, K.B., et al., Heterogeneous distribution of shear strains in deformed Ti66.1Cu8Ni4.8Sn7.2Nb13.9 nanostructure-dendrite composite. physica status solidi (a), 2005. 202(13): pp.2405-2412.
[177] He, G., et al., Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat Mater, 2003. 2(1): pp.33-37.
DOI: 10.1038/nmat792
[178] Wang, Y., et al., Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite. Progress in Natural Science: Materials International, 2014. 24(2): pp.121-127.
[179] Wang, Y.S., et al., The role of the interface in a Ti-based metallic glass matrix composite with in situ dendrite reinforcement. Surface and Interface Analysis, 2014. 46(5): pp.293-296.
DOI: 10.1002/sia.5413
[180] Zhang, T., et al., Dendrite size dependence of tensile plasticity of in situ Ti-based metallic glass matrix composites. Journal of Alloys and Compounds, 2014. 583: pp.593-597.
[181] Chu, M.Y., et al., Quasi-static and dynamic deformation behaviors of an in-situ Ti-based metallic glass matrix composite. Journal of Alloys and Compounds, 2015. 640: pp.305-310.
[182] Gargarella, P., et al., Ti–Cu–Ni shape memory bulk metallic glass composites. Acta Materialia, 2013. 61(1): pp.151-162.
[183] Hofmann, D.C., et al., New processing possibilities for highly toughened metallic glass matrix composites with tensile ductility. Scripta Materialia, 2008. 59(7): pp.684-687.
[184] Chu, J.P., Annealing-induced amorphization in a glass-forming thin film. JOM, 2009. 61(1): pp.72-75.
[185] Cheng, J.L. and G. Chen, Glass formation of Zr–Cu–Ni–Al bulk metallic glasses correlated with L → Zr2Cu + ZrCu pseudo binary eutectic reaction. Journal of Alloys and Compounds, 2013. 577: pp.451-455.
[186] Biffi, C.A., A. Figini Albisetti, and A. Tuissi. CuZr based shape memory alloys: effect of Cr and Co on the martensitic transformation. in Materials Science Forum. 2013. Trans Tech Publ.
[187] Choi-Yim, H., et al., Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites. Scripta Materialia, 2001. 45(9): pp.1039-1045.
[188] Hui, X., et al., Wetting angle and infiltration velocity of Zr base bulk metallic glass composite. Intermetallics, 2006. 14(8–9): pp.931-935.
[189] Xue, Y.F., et al., Strength-improved Zr-based metallic glass/porous tungsten phase composite by hydrostatic extrusion. Applied Physics Letters, 2007. 90(8): p.081901.
DOI: 10.1063/1.2456618
[190] Hou, B., et al., Dynamic and quasi-static mechanical properties of fibre-reinforced metallic glass at different temperatures. Philosophical Magazine Letters, 2007. 87(8): pp.595-601.
[191] Zhang, Y. and A.L. Greer, Correlations for predicting plasticity or brittleness of metallic glasses. Journal of Alloys and Compounds, 2007. 434–435: pp.2-5.
[192] Fu, X.L., Y. Li, and C.A. Schuh, Temperature, strain rate and reinforcement volume fraction dependence of plastic deformation in metallic glass matrix composites. Acta Materialia, 2007. 55(9): pp.3059-3071.
[193] Chen, Y., et al., Preparation, microstructure and deformation behavior of Zr-based metallic glass/porous SiC interpenetrating phase composites. Materials Science and Engineering: A, 2011. 530: pp.15-20.
[194] Chen, C., et al., Effect of Temperature on the Dynamic Mechanical Behaviors of Zr-Based Metallic Glass Reinforced Porous Tungsten Matrix Composite. Advanced Engineering Materials, 2012. 14(7): pp.439-444.
[195] Liu, T., et al., Microstructures and Mechanical Properties of ZrC Reinforced (Zr-Ti)-Al-Ni-Cu Glassy Composites by an In Situ Reaction. Advanced Engineering Materials, 2009. 11(5): pp.392-398.
[196] Zhang, H.F., et al., Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite. Intermetallics, 2009. 17(12): pp.1070-1077.
[197] Khademian, N. and R. Gholamipour, Fabrication and mechanical properties of a tungsten wire reinforced Cu–Zr–Al bulk metallic glass composite. Materials Science and Engineering: A, 2010. 527(13–14): pp.3079-3084.
[198] Choi-Yim, H. and W.L. Johnson, Bulk metallic glass matrix composites. Applied Physics Letters, 1997. 71(26): pp.3808-3810.
DOI: 10.1063/1.120512
[199] Choi—Yim, H., Synthesis and Characterization of Bulk Metallic Glass Matrix Composites. 1998, California Institute of Technology.
[200] Hays, C.C., C.P. Kim, and W.L. Johnson, Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Materials Science and Engineering: A, 2001. 304–306: pp.650-655.
[201] Löser, W., et al., Effect of casting conditions on dendrite-amorphous/nanocrystalline Zr–Nb–Cu–Ni–Al in situ composites. Intermetallics, 2004. 12(10–11): pp.1153-1158.
[202] Liu, Z., et al., Pronounced ductility in CuZrAl ternary bulk metallic glass composites with optimized microstructure through melt adjustment. AIP Advances, 2012. 2(3): p.032176.
DOI: 10.1063/1.4754853
[203] Eckert, J., et al., Structural bulk metallic glasses with different length-scale of constituent phases. Intermetallics, 2002. 10(11–12): pp.1183-1190.
[204] Das, J., et al., Designing bulk metallic glass and glass matrix composites in martensitic alloys. Journal of Alloys and Compounds, 2009. 483(1–2): pp.97-101.
[205] Wu, D., et al., Deformation-Induced Martensitic Transformation in Cu-Zr-Zn Bulk Metallic Glass Composites. Metals, 2015. 5(4): p.2134.
DOI: 10.3390/met5042134
[206] Pauly, S., et al., Deformation-induced martensitic transformation in Cu–Zr–(Al,Ti) bulk metallic glass composites. Scripta Materialia, 2009. 60(6): pp.431-434.
[207] Javid, F.A., et al., Martensitic transformation and thermal cycling effect in Cu–Co–Zr alloys. Journal of Alloys and Compounds, 2011. 509, Supplement 1: p. S334-S337.
[208] Antonaglia, J., et al., Bulk Metallic Glasses Deform via Slip Avalanches. Physical Review Letters, 2014. 112(15): p.155501.
[209] Fan, C., R.T. Ott, and T.C. Hufnagel, Metallic glass matrix composite with precipitated ductile reinforcement. Applied Physics Letters, 2002. 81(6): pp.1020-1022.
DOI: 10.1063/1.1498864
[210] Hufnagel, T.C., et al., Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics, 2002. 10(11–12): pp.1163-1166.
[211] Hufnagel, T.C., Preface to the viewpoint set on mechanical behavior of metallic glasses. Scripta Materialia, 2006. 54(3): pp.317-319.
[212] Hufnagel, T.C., U.K. Vempati, and J.D. Almer, Crack-Tip Strain Field Mapping and the Toughness of Metallic Glasses. PLoS ONE, 2013. 8(12): p. e83289.
[213] Fan, C., et al., Properties of as-cast and structurally relaxed Zr-based bulk metallic glasses. Journal of Non-Crystalline Solids, 2006. 352(2): pp.174-179.
[214] Antonione, C., et al., Phase separation in multicomponent amorphous alloys. Journal of Non-Crystalline Solids, 1998. 232–234: pp.127-132.
[215] Krämer, L., et al., Production of Bulk Metallic Glasses by Severe Plastic Deformation. Metals, 2015. 5(2): p.720.
[216] Porter, D.A. and K.E. Easterling, Phase Transformations in Metals and Alloys, Third Edition (Revised Reprint). 1992: Taylor & Francis.
[217] Bracchi, A., et al., Decomposition and metastable phase formation in the bulk metallic glass matrix composite Zr56Ti14Nb5Cu7Ni6Be12. Journal of Applied Physics, 2006. 99(12): p.123519.
DOI: 10.1063/1.2207496
[218] Park, E.S., J.S. Kyeong, and D.H. Kim, Phase separation and improved plasticity by modulated heterogeneity in Cu–(Zr, Hf)–(Gd, Y)–Al metallic glasses. Scripta Materialia, 2007. 57(1): pp.49-52.
[219] Van De Moortèle, B., et al., Phase separation before crystallization in Zr-Ti-Cu-Ni-Be bulk metallic glasses: Influence of the chemical composition. Journal of Non-Crystalline Solids, 2004. 345-346: pp.169-172.
[220] Inoue, A. and T. Zhang, Fabrication of Bulky Zr-Based Glassy Alloys by Suction Casting into Copper Mold. Materials Transactions, JIM, 1995. 36(9): pp.1184-1187.
[221] Inoue, A. and T. Zhang, Fabrication of Bulk Glassy Zr<SUB>55</SUB>Al<SUB>10</SUB>Ni<SUB>5</SUB>Cu<SUB>30</SUB> Alloy of 30 mm in Diameter by a Suction Casting Method. Materials Transactions, JIM, 1996. 37(2): pp.185-187.
[222] Lou, H.B., et al., 73 mm-diameter bulk metallic glass rod by copper mould casting. Applied Physics Letters, 2011. 99(5): p.051910.
DOI: 10.1063/1.3621862
[223] Qiao, J.W., et al., Synthesis of plastic Zr-based bulk metallic glass matrix composites by the copper-mould suction casting and the Bridgman solidification. Journal of Alloys and Compounds, 2009. 477(1–2): pp.436-439.
[224] Wall, J.J., et al., A combined drop/suction-casting machine for the manufacture of bulk-metallic-glass materials. Review of Scientific Instruments, 2006. 77(3): p.033902.
DOI: 10.1063/1.2179415
[225] Figueroa, I., et al., Preparation of Cu-based bulk metallic glasses by suction casting. (2007).
[226] Inoue, A., et al., Production methods and properties of engineering glassy alloys and composites. Intermetallics, 2015. 58: pp.20-30.
[227] Wang, B., et al., Simulation of solidification microstructure in twin-roll casting strip. Computational Materials Science, 2010. 49(1, Supplement): p. S135-S139.
[228] Hofmann, D.C., et al., Semi-solid induction forging of metallic glass matrix composites. JOM, 2009. 61(12): pp.11-17.
[229] Khalifa, H.E., Bulk metallic glasses and their composites : composition optimization, thermal stability, and microstructural tunability. (2009).
[230] Schroers, J., Processing of Bulk Metallic Glass. Advanced Materials, 2010. 22(14): pp.1566-1597.
[231] Chen, B., et al., Improvement in mechanical properties of a Zr-based bulk metallic glass by laser surface treatment. Journal of Alloys and Compounds, 2010. 504, Supplement 1: p. S45-S47.
[232] Santos, E.C., et al., Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture, 2006. 46(12–13): pp.1459-1468.
[233] Yang, G., et al., Laser solid forming Zr-based bulk metallic glass. Intermetallics, 2012. 22: pp.110-115.
[234] Sun, H. and K.M. Flores, Laser deposition of a Cu-based metallic glass powder on a Zr-based glass substrate. Journal of Materials Research, 2008. 23(10): pp.2692-2703.
[235] Sun, H. and K. Flores, Microstructural analysis of a laser-processed Zr-based bulk metallic glass. Metallurgical and Materials Transactions A, 2010. 41(7): pp.1752-1757.
[236] Sun, H. and K.M. Flores, Spherulitic crystallization mechanism of a Zr-based bulk metallic glass during laser processing. Intermetallics, 2013. 43: pp.53-59.
[237] Zhang, Y., et al., Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming. Intermetallics, 2015. 66: pp.22-30.
[238] Welk, B.A., et al., Phase Selection in a Laser Surface Melted Zr-Cu-Ni-Al-Nb Alloy. Metallurgical and Materials Transactions B, 2014. 45(2): pp.547-554.
[239] Welk, B.A., M.A. Gibson, and H.L. Fraser, A Combinatorial Approach to the Investigation of Metal Systems that Form Both Bulk Metallic Glasses and High Entropy Alloys. JOM, 2016. 68(3): pp.1021-1026.
[240] Borkar, T., et al., A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Materialia, 2016. 116: pp.63-76.
[241] Li, X.P., et al., The role of a low-energy–density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting. Materials & Design, 2014. 63: pp.407-411.
[242] Li, X.P., et al., Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties. Materials Science and Engineering: A, 2014. 606: pp.370-379.
[243] Li, X.P., et al., Effect of substrate temperature on the interface bond between support and substrate during selective laser melting of Al–Ni–Y–Co–La metallic glass. Materials & Design (1980-2015), 2015. 65: pp.1-6.
[244] Prashanth, K.G., et al., Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Additive Manufacturing, 2015. 6: pp.1-5.
[245] Pauly, S., et al., Processing metallic glasses by selective laser melting. Materials Today, 2013. 16(1–2): pp.37-41.
[246] Jung, H.Y., et al., Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study. Materials & Design, 2015. 86: pp.703-708.
[247] Thompson, S.M., et al., An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Additive Manufacturing, 2015. 8: pp.36-62.
[248] Shamsaei, N., et al., An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control. Additive Manufacturing, 2015. 8: pp.12-35.
[249] Sun, Y.F., et al., Effect of Nb content on the microstructure and mechanical properties of Zr–Cu–Ni–Al–Nb glass forming alloys. Journal of Alloys and Compounds, 2005. 403(1–2): pp.239-244.
[250] Kühn, U., et al., Microstructure and mechanical properties of slowly cooled Zr–Nb–Cu–Ni–Al composites with ductile bcc phase. Materials Science and Engineering: A, 2004. 375–377: pp.322-326.
[251] Sun, Y.F., et al., Brittleness of Zr-based bulk metallic glass matrix composites containing ductile dendritic phase. Materials Science and Engineering: A, 2005. 406(1–2): pp.57-62.
[252] Sun, Y.F., et al., Effect of quasicrystalline phase on the deformation behavior of Zr62Al9.5Ni9.5Cu14Nb5 bulk metallic glass. Materials Science and Engineering: A, 2005. 398(1–2): pp.22-27.
[253] Kühn, U., et al., ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Applied Physics Letters, 2002. 80(14): pp.2478-2480.
DOI: 10.1063/1.1467707
[254] Song, W., et al., Microstructural Control via Copious Nucleation Manipulated by In Situ Formed Nucleants: Large-Sized and Ductile Metallic Glass Composites. Advanced Materials, 2016: p. n/a-n/a.
[255] Gao, W.-h., et al., Effects of Co and Al addition on martensitic transformation and microstructure in ZrCu-based shape memory alloys. Transactions of Nonferrous Metals Society of China, 2015. 25(3): pp.850-855.
[256] Firstov, G.S., J. Van Humbeeck, and Y.N. Koval, High-temperature shape memory alloys: Some recent developments. Materials Science and Engineering: A, 2004. 378(1–2): pp.2-10.
[257] Nishida, M., et al., New deformation twinning mode of B19' martensite in Ti-Ni shape memory alloy. Scripta Materialia, 1998. 39(12): pp.1749-1754.
[258] Schryvers, D., et al., Applications of advanced transmission electron microscopic techniques to Ni–Ti based shape memory materials. Materials Science and Engineering: A, 2004. 378(1–2): pp.11-15.
[259] Kim, C.P., et al., Realization of high tensile ductility in a bulk metallic glass composite by the utilization of deformation-induced martensitic transformation. Scripta Materialia, 2011. 65(4): pp.304-307.
[260] Lee, J.-C., et al., Strain hardening of an amorphous matrix composite due to deformation- induced nanocrystallization during quasistatic compression. Applied Physics Letters, 2004. 84(15): pp.2781-2783.
DOI: 10.1063/1.1697631
[261] Shi, Y. and M.L. Falk, Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Materialia, 2007. 55(13): pp.4317-4324.
[262] Wu, Y., et al., Bulk Metallic Glass Composites with Transformation-Mediated Work-Hardening and Ductility. Advanced Materials, 2010. 22(25): pp.2770-2773.
[263] Louzguine-Luzgin, D.V., et al., High-strength and ductile glassy-crystal Ni–Cu–Zr–Ti composite exhibiting stress-induced martensitic transformation. Philosophical Magazine, 2009. 89(32): pp.2887-2901.
[264] Hao, S., et al., A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength. Science, 2013. 339(6124): pp.1191-1194.
[265] Yang, Y. and C.T. Liu, Size effect on stability of shear-band propagation in bulk metallic glasses: an overview. Journal of Materials Science, 2012. 47(1): pp.55-67.
[266] Jiang, W.H. and M. Atzmon, Mechanically-assisted nanocrystallization and defects in amorphous alloys: A high-resolution transmission electron microscopy study. Scripta Materialia, 2006. 54(3): pp.333-336.
[267] Dodd, B. and Y. Bai, Adiabatic Shear Localization: Frontiers and Advances. 2012: Elsevier.
[268] Jiang, W.H., F.E. Pinkerton, and M. Atzmon, Deformation-induced nanocrystallization: A comparison of two amorphous Al-based alloys. Journal of Materials Research, 2005. 20(03): pp.696-702.
[269] Akihisa, I., et al., Aluminum-Based Amorphous Alloys with Tensile Strength above 980 MPa (100 kg/mm 2 ). Japanese Journal of Applied Physics, 1988. 27(4A): p. L479.
DOI: 10.1143/jjap.27.l479
[270] Inoue, A., Bulk amorphous and nanocrystalline alloys with high functional properties. Materials Science and Engineering: A, 2001. 304–306: pp.1-10.
[271] Qian, M., Metal Powder for Additive Manufacturing. JOM, 2015. 67(3): pp.536-537.
[272] Sames, W.J., et al., The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, 2016. 61(5): pp.315-360.
[273] Olakanmi, E.O., R.F. Cochrane, and K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Progress in Materials Science, 2015. 74: pp.401-477.
[274] Frazier, W.E., Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 2014. 23(6): pp.1917-1928.
[275] Gibson, I., W.D. Rosen, and B. Stucker, Development of Additive Manufacturing Technology, in Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. 2010, Springer US: Boston, MA. pp.36-58.
[276] Kruth, J.P., et al., Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004. 149(1–3): pp.616-622.
[277] Dutta, B. and F.H. Froes, Chapter 1 - The Additive Manufacturing of Titanium Alloys, in Additive Manufacturing of Titanium Alloys. 2016, Butterworth-Heinemann. pp.1-10.
[278] Gibson, I., W.D. Rosen, and B. Stucker, Medical Applications for Additive Manufacture, in Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. 2010, Springer US: Boston, MA. pp.400-414.
[279] Yue, T.M. and Y.P. Su, Laser cladding of SiC reinforced Zr65Al7.5Ni10Cu17.5 amorphous coating on magnesium substrate. Applied Surface Science, 2008. 255(5, Part 1): pp.1692-1698.
[280] Kelly, P.M. and M.-X. Zhang, Edge-to-edge matching—The fundamentals. Metallurgical and Materials Transactions A, 2006. 37(3): pp.833-839.
[281] Kelly, P. and M.-X. Zhang. Edge-to-edge matching-a new approach to the morphology and crystallography of precipitates. in Materials Forum. (1999).
[282] Zhang, M.X. and P.M. Kelly, Edge-to-edge matching and its applications: Part I. Application to the simple HCP/BCC system. Acta Materialia, 2005. 53(4): pp.1073-1084.
[283] Zhang, M.X. and P.M. Kelly, Edge-to-edge matching model for predicting orientation relationships and habit planes—the improvements. Scripta Materialia, 2005. 52(10): pp.963-968.
[284] Smugeresky, J., et al., Laser engineered net shaping(LENS) process: optimization of surface finish and microstructural properties. Advances in Powder Metallurgy and Particulate Materials--1997., 1997. 3: p.21.
DOI: 10.2172/554828
[285] Harooni, A., et al., Processing window development for laser cladding of zirconium on zirconium alloy. Journal of Materials Processing Technology, 2016. 230: pp.263-271.
[286] Wang, H.-S., H.-G. Chen, and J.S.-C. Jang, Microstructure evolution in Nd:YAG laser-welded (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass alloy. Journal of Alloys and Compounds, 2010. 495(1): pp.224-228.
[287] Yue, T.M., Y.P. Su, and H.O. Yang, Laser cladding of Zr65Al7.5Ni10Cu17.5 amorphous alloy on magnesium. Materials Letters, 2007. 61(1): pp.209-212.
[288] Zheng, B., et al., Processing and Behavior of Fe-Based Metallic Glass Components via Laser-Engineered Net Shaping. Metallurgical and Materials Transactions A, 2009. 40(5): pp.1235-1245.
[289] Vandenbroucke, B. and J.P. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal, 2007. 13(4): pp.196-203.
[290] Cunliffe, A., et al., Glass formation in a high entropy alloy system by design. Intermetallics, 2012. 23: pp.204-207.
[291] Balla, V.K. and A. Bandyopadhyay, Laser processing of Fe-based bulk amorphous alloy. Surface and Coatings Technology, 2010. 205(7): pp.2661-2667.
[292] Basu, A., et al., Laser surface coating of Fe-Cr-Mo-Y-B-C bulk metallic glass composition on AISI 4140 steel. Surface and Coatings Technology, 2008. 202(12): pp.2623-2631.
[293] Matthews, D.T.A., et al., Laser engineered surfaces from glass forming alloy powder precursors: Microstructure and wear. Surface and Coatings Technology, 2009. 203(13): pp.1833-1843.
[294] Zhang, L.C., et al., Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Materialia, 2011. 65(1): pp.21-24.
[295] Yan, M., et al., The influence of topological structure on bulk glass formation in Al-based metallic glasses. Scripta Materialia, 2011. 65(9): pp.755-758.
[296] Mu, J., et al., Synthesis and Properties of Al-Ni-La Bulk Metallic Glass. Advanced Engineering Materials, 2009. 11(7): pp.530-532.
[297] Yang, B.J., et al., Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scripta Materialia, 2009. 61(4): pp.423-426.
[298] Yang, B.J., et al., Developing aluminum-based bulk metallic glasses. Philosophical Magazine, 2010. 90(23): pp.3215-3231.
[299] Balla, V.K., et al., Laser-assisted Zr/ZrO2 coating on Ti for load-bearing implants. Acta Biomaterialia, 2009. 5(7): pp.2800-2809.
[300] Balla, V.K., et al., Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomaterialia, 2010. 6(6): pp.2329-2334.
[301] Wang, X., et al., Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 2016. 83: pp.127-141.
[302] Rafique, M.M.A., Modeling and Simulation of Heat Transfer Phenomena. (2015).
[303] Zheng, B., et al., Thermal Behavior and Microstructural Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations. Metallurgical and Materials Transactions A, 2008. 39(9): pp.2228-2236.
[304] King, W., et al., Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Materials Science and Technology, 2015. 31(8): pp.957-968.
[305] Khairallah, S.A., et al., Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Materialia, 2016. 108: pp.36-45.
[306] Rafique, M.M.A. and J. Iqbal, Modeling and simulation of heat transfer phenomena during investment casting. International Journal of Heat and Mass Transfer, 2009. 52(7–8): pp.2132-2139.
[307] Rappaz, M. and C.A. Gandin, Probabilistic modelling of microstructure formation in solidification processes. Acta Metallurgica et Materialia, 1993. 41(2): pp.345-360.
[308] Bennon, W.D. and F.P. Incropera, A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation. International Journal of Heat and Mass Transfer, 1987. 30(10): pp.2161-2170.
[309] Voller, V.R., A.D. Brent, and C. Prakash, The modelling of heat, mass and solute transport in solidification systems. International Journal of Heat and Mass Transfer, 1989. 32(9): pp.1719-1731.
[310] Ganesan, S. and D.R. Poirier, Conservation of mass and momentum for the flow of interdendritic liquid during solidification. Metallurgical Transactions B, 1990. 21(1): pp.173-181.
DOI: 10.1007/bf02658128
[311] Ni, J. and C. Beckermann, A volume-averaged two-phase model for transport phenomena during solidification. Metallurgical Transactions B, 1991. 22(3): pp.349-361.
DOI: 10.1007/bf02651234
[312] Rappaz, M., Modelling of microstructure formation in solidification processes. International Materials Reviews, 1989. 34(1): pp.93-124.
[313] Kurz, W., B. Giovanola, and R. Trivedi, Theory of microstructural development during rapid solidification. Acta Metallurgica, 1986. 34(5): pp.823-830.
[314] Trivedi, R., P. Magnin, and W. Kurz, Theory of eutectic growth under rapid solidification conditions. Acta Metallurgica, 1987. 35(4): pp.971-980.
[315] Basak, A., R. Acharya, and S. Das, Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization. Metallurgical and Materials Transactions A, 2016. 47(8): pp.3845-3859.
[316] Christian, J.W., CHAPTER 10 - The Classical Theory of Nucleation, in The Theory of Transformations in Metals and Alloys. 2002, Pergamon: Oxford. pp.422-479.
[317] Avrami, M., Kinetics of Phase Change. I General Theory. The Journal of Chemical Physics, 1939. 7(12): pp.1103-1112.
[318] Price, C.W., Simulations of grain impingement and recrystallization kinetics. Acta Metallurgica, 1987. 35(6): pp.1377-1390.
[319] Zou, J., Simulation de la solidification eutectique équiaxe. (1989).
[320] Thévoz, P., J.L. Desbiolles, and M. Rappaz, Modeling of equiaxed microstructure formation in casting. Metallurgical Transactions A, 1989. 20(2): pp.311-322.
DOI: 10.1007/bf02670257
[321] Stefanescu, D., Science and engineering of casting solidification. 2015: Springer.
[322] Kurz, W. and D.J. Fisher, Fundamentals of solidification. 1986: Trans Tech Publications.
[323] Chalmers, B., Principles of Solidification, in Applied Solid State Physics, W. Low and M. Schieber, Editors. 1970, Springer US: Boston, MA. pp.161-170.
[324] Rappaz, M. and E. Blank, Simulation of oriented dendritic microstructures using the concept of dendritic lattice. Journal of Crystal Growth, 1986. 74(1): pp.67-76.
[325] Spittle, J.A. and S.G.R. Brown, Computer simulation of the effects of alloy variables on the grain structures of castings. Acta Metallurgica, 1989. 37(7): pp.1803-1810.
[326] Brown, S.G.R. and J.A. Spittle, Computer simulation of grain growth and macrostructure development during solidification. Materials Science and Technology, 1989. 5(4): pp.362-368.
[327] Anderson, M.P., et al., Computer simulation of grain growth—I. Kinetics. Acta Metallurgica, 1984. 32(5): pp.783-791.
[328] Pekarskaya, E., C.P. Kim, and W.L. Johnson, In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. Journal of Materials Research, 2001. 16(09): pp.2513-2518.
[329] González, S., Role of minor additions on metallic glasses and composites. Journal of Materials Research, 2015. 31(1): pp.76-87.
[330] Song, H., et al., Simulation Study of Heterogeneous Nucleation at Grain Boundaries During the Austenite-Ferrite Phase Transformation: Comparing the Classical Model with the Multi-Phase Field Nudged Elastic Band Method. Metallurgical and Materials Transactions A, 2016: pp.1-9.
[331] Hunt, J.D., Steady state columnar and equiaxed growth of dendrites and eutectic. Materials Science and Engineering, 1984. 65(1): pp.75-83.
[332] Browne, D.J., Z. Kovacs, and W.U. Mirihanage, Comparison of nucleation and growth mechanisms in alloy solidification to those in metallic glass crystallisation — relevance to modeling. Transactions of the Indian Institute of Metals, 2009. 62(4): pp.409-412.
[333] Acharya, R. and S. Das, Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2015. 46a(9): pp.3864-3875.
[334] Choudhury, A., et al., Comparison of phase-field and cellular automaton models for dendritic solidification in Al–Cu alloy. Computational Materials Science, 2012. 55: pp.263-268.
[335] Zaeem, M.A., H. Yin, and S.D. Felicelli, Comparison of Cellular Automaton and Phase Field Models to Simulate Dendrite Growth in Hexagonal Crystals. Journal of Materials Science & Technology, 2012. 28(2): pp.137-146.
[336] Tan, W., N.S. Bailey, and Y.C. Shin, A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys. Computational Materials Science, 2011. 50(9): pp.2573-2585.
[337] StJohn, D.H., et al., The Interdependence Theory: The relationship between grain formation and nucleant selection. Acta Materialia, 2011. 59(12): pp.4907-4921.
[338] Maxwell, I. and A. Hellawell, A simple model for grain refinement during solidification. Acta Metallurgica, 1975. 23(2): pp.229-237.
[339] Acharya, R., et al. COMPUTATIONAL MODELING AND EXPERIMENTAL VALIDATION OF MICROSTRUCTURAL DEVELOPMENT IN SUPERALLOY CMSX-4 PROCESSED THROUGH SCANNING LASER EPITAXY. in Solid Freeform Fabrication Symposium. (2012).
[340] Gandin, C.A. and M. Rappaz, A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metallurgica et Materialia, 1994. 42(7): pp.2233-2246.
[341] Charbon, C. and M. Rappaz, 3D probabilistic modelling of equiaxed eutectic solidification. Modelling and Simulation in Materials Science and Engineering, 1993. 1(4): p.455.
[342] Gandin, C.A. and M. Rappaz, A 3D Cellular Automaton algorithm for the prediction of dendritic grain growth. Acta Materialia, 1997. 45(5): pp.2187-2195.
[343] Gandin, C.-A., et al., A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures. Metallurgical and Materials Transactions A, 1999. 30(12): pp.3153-3165.
[344] Lan, S., et al., Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition. Applied Physics Letters, 2016. 108(21): p.211907.
DOI: 10.1063/1.4952724
[345] Wei, S., et al., Liquid–liquid transition in a strong bulk metallic glass-forming liquid. Nat Commun, 2013. 4.
DOI: 10.1038/ncomms3083
[346] Blázquez, J.S., et al., Instantaneous growth approximation describing the nanocrystallization process of amorphous alloys: A cellular automata model. Journal of Non-Crystalline Solids, 2008. 354(30): pp.3597-3605.
[347] Gránásy, L., Quantitative analysis of the classical nucleation theory on glass-forming alloys. Journal of Non-Crystalline Solids, 1993. 156: pp.514-518.
[348] Guo, G.-Q., et al., Structure-induced microalloying effect in multicomponent alloys. Materials & Design, 2016. 103: pp.308-314.
[349] Nandi, U.K., et al., Composition dependence of the glass forming ability in binary mixtures: The role of demixing entropy. The Journal of Chemical Physics, 2016. 145(3): p.034503.
DOI: 10.1063/1.4958630
[350] Raabe, D., Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering. Modelling and Simulation in Materials Science and Engineering, 2004. 12(6): p. R13.
[351] Sun, D., et al., Lattice Boltzmann modeling of dendritic growth in a forced melt convection. Acta Materialia, 2009. 57(6): pp.1755-1767.
[352] Sun, D.K., et al., Modelling of dendritic growth in ternary alloy solidification with melt convection. International Journal of Cast Metals Research, 2011. 24(3-4): pp.177-183.
[353] Sun, D.K., et al., Lattice Boltzmann modeling of dendritic growth in forced and natural convection. Computers & Mathematics with Applications, 2011. 61(12): pp.3585-3592.
[354] Eshraghi, M., B. Jelinek, and S.D. Felicelli, Large-Scale Three-Dimensional Simulation of Dendritic Solidification Using Lattice Boltzmann Method. JOM, 2015. 67(8): pp.1786-1792.
[355] Asle Zaeem, M., Advances in Modeling of Solidification Microstructures. JOM, 2015. 67(8): pp.1774-1775.
[356] Bao, Y.B. and J. Meskas, Lattice boltzmann method for fluid simulations. Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, (2011).
[357] Boettinger, W.J., et al., Phase-Field Simulation of Solidification. Annual Review of Materials Research, 2002. 32(1): pp.163-194.
[358] Wang, T. and R.E. Napolitano, A Phase-Field Model for Phase Transformations in Glass-Forming Alloys. Metallurgical and Materials Transactions A, 2012. 43(8): pp.2662-2668.
[359] Wang, W., S. Luo, and M. Zhu, Numerical Simulation of Three-Dimensional Dendritic Growth of Alloy: Part II—Model Application to Fe-0.82WtPctC Alloy. Metallurgical and Materials Transactions A, 2016. 47(3): pp.1355-1366.
[360] Wang, W., S. Luo, and M. Zhu, Numerical Simulation of Three-Dimensional Dendritic Growth of Alloy: Part I—Model Development and Test. Metallurgical and Materials Transactions A, 2016. 47(3): pp.1339-1354.
[361] Zhang, X., et al., A three-dimensional cellular automaton model for dendritic growth in multi-component alloys. Acta Materialia, 2012. 60(5): pp.2249-2257.
[362] Zhu, M.F. and D.M. Stefanescu, Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys. Acta Materialia, 2007. 55(5): pp.1741-1755.
[363] Vermolen, F.J., Zener solutions for particle growth in multi-component alloys. 2006, Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Institute of Applied Mathematics.
[364] Nestler, B. and A. Choudhury, Phase-field modeling of multi-component systems. Current Opinion in Solid State and Materials Science, 2011. 15(3): pp.93-105.
[365] Alder, B.J. and T.E. Wainwright, Phase Transition for a Hard Sphere System. The Journal of Chemical Physics, 1957. 27(5): pp.1208-1209.
DOI: 10.1063/1.1743957
[366] Wang, X. and X. Xu, Molecular Dynamics Simulation of Heat Transfer and Phase Change During Laser Material Interaction. Journal of Heat Transfer, 2001. 124(2): pp.265-274.
DOI: 10.1115/1.1445289
[367] Metropolis, N., et al., Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 1953. 21(6): pp.1087-1092.
[368] Wood, W.W. and J.D. Jacobson, Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres. The Journal of Chemical Physics, 1957. 27(5): pp.1207-1208.
DOI: 10.1063/1.1743956
[369] Pusztai, L. and E. Sváb, Structure study of Ni62Nb38 metallic glass using reverse Monte Carlo simulation. Journal of Non-Crystalline Solids, 1993. 156: pp.973-977.
[370] Hwang, J., et al., Nanoscale Structure and Structural Relaxation in ${\mathrm{Zr}}_{50}{\mathrm{Cu}}_{45}{\mathrm{Al}}_{5}$ Bulk Metallic Glass. Physical Review Letters, 2012. 108(19): p.195505.
[371] Parr, R.G., D.P. Craig, and I.G. Ross, Molecular Orbital Calculations of the Lower Excited Electronic Levels of Benzene, Configuration Interaction Included. The Journal of Chemical Physics, 1950. 18(12): pp.1561-1563.
DOI: 10.1063/1.1747540
[372] Gilbert, A., Introduction to Computational Quantum Chemistry: Theory. University Lecture, (2007).
[373] Perim, E., et al., Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nature Communications, 2016. 7: p.12315.
DOI: 10.1038/ncomms12315
[374] Wang, X.D., et al., Atomic picture of elastic deformation in a metallic glass. Scientific Reports, 2015. 5: p.9184.
[375] Zheng, G.-P., A Density Functional Theory Study on the Deformation Behaviors of Fe-Si-B Metallic Glasses. International Journal of Molecular Sciences, 2012. 13(8): pp.10401-10409.
[376] Daw, M.S. and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984. 29(12): p.6443.
[377] Inoue, A., Bulk Glassy Alloys: Historical Development and Current Research. Engineering, 2015. 1(2): pp.185-191.
[378] Inoue, A., T. Zhang, and E. Makabe, Production methods of metallic glasses by a suction casting method. 1998, Google Patents.
[379] Greer, A.L., Liquid metals: Supercool order. Nat Mater, 2006. 5(1): pp.13-14.
[380] Liu, X.J., et al., Metallic Liquids and Glasses: Atomic Order and Global Packing. Physical Review Letters, 2010. 105(15): p.155501.
[381] Wang, W.H., Metallic glasses: Family traits. Nat Mater, 2012. 11(4): pp.275-276.
[382] Kumar, G., A. Desai, and J. Schroers, Bulk Metallic Glass: The Smaller the Better. Advanced Materials, 2011. 23(4): pp.461-476.
[383] James, P.F., Liquid-phase separation in glass-forming systems. Journal of Materials Science, 1975. 10(10): pp.1802-1825.
DOI: 10.1007/bf00554944
[384] Wang, C.Y. and C. Beckermann, A multiphase solute diffusion model for dendritic alloy solidification. Metallurgical Transactions A, 1993. 24(12): pp.2787-2802.
DOI: 10.1007/bf02659502
[385] Li, H.Q., J.H. Yan, and H.J. Wu, Modelling and simulation of bulk metallic glass production process with suction casting. Materials Science and Technology, 2009. 25(3): pp.425-431.
[386] Zhou, X., et al., Simulation of microstructure evolution during hybrid deposition and micro-rolling process. Journal of Materials Science, 2016. 51(14): pp.6735-6749.
[387] Zhang, J., et al. Probabilistic simulation of solidification microstructure evolution during laser-based metal deposition. in Proceedings of 2013 Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference. (2013).
[388] Zinoviev, A., et al., Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method. Materials & Design, 2016. 106: pp.321-329.
[389] Tian, F., Z. Li, and J. Song, Solidification of laser deposition shaping for TC4 alloy based on cellular automation. Journal of Alloys and Compounds, 2016. 676: pp.542-550.
[390] Wang, Z.-j., et al., Simulation of Microstructure during Laser Rapid Forming Solidification Based on Cellular Automaton. Mathematical Problems in Engineering, 2014. 2014: p.9.
DOI: 10.1155/2014/627528
[391] Chen, Y., C. Zhou, and J. Lao, A layerless additive manufacturing process based on CNC accumulation. Rapid Prototyping Journal, 2011. 17(3): pp.218-227.
[392] Lindgren, L.-E., et al., Simulation of additive manufacturing using coupled constitutive and microstructure models. Additive Manufacturing.
[393] Markl, M. and C. Körner, Multiscale Modeling of Powder Bed–Based Additive Manufacturing. Annual Review of Materials Research, 2016. 46(1): pp.93-123.
[394] Fan, Z., et al. Numerical Simulation of the Evolution of Solidification Microstructure in Laser Deposition. in Proceedings of the 18th Annual Solid Freeform Fabrication Symposium. (2007).
[395] Zhu, M.F., S.Y. Lee, and C.P. Hong, Modified cellular automaton model for the prediction of dendritic growth with melt convection. Physical Review E, 2004. 69(6): p.061610.