Electrochemical Frequency Modulation and Reactivation Investigation of Thioglycolurils in Strong Acid Medium

Article Preview

Abstract:

The Electrochemical frequency modulation and Reactivation investigation results have shown that the anticorrosion inhibitors of 3a,6a- bistolylthioglycoluril, 4,5-dihydroxy-4,5-bistolylimidazolidine-2-thione and 5,5-bistolyl-2-thione-4-imidazolidone maximally reduced H+ impacts on metal surface so these inhibitors have decreased the degree of sensitization to intergranular stress corrosion cracking on N80 steel surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-128

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Döner A, Solmaz R, Özcan M, Kardas G. Experimental and theoretical studies of thiazoles as corrosion inhibitors for mild steel in sulphuric acid solution. Corros Sci (2011); 53: 2902–13.

DOI: 10.1016/j.corsci.2011.05.027

Google Scholar

[2] C. X. Yin et al., Synthesis and Properties of Solidied Inhibitors,, Advanced Materials Research, Vol. 868, pp.624-628, 2014. https://doi.org/10.4028/www.scientific.net/AMR.868.624.

DOI: 10.4028/www.scientific.net/amr.868.624

Google Scholar

[3] Abbouda Y, Abourriche A, Saffaj T, Berrada M, Charrouf M, Bennamara A, Al Himidi N, Hannache H. 2,3-Quinoxalinedione as a novel corrosion inhibitor for mild steel in 1 M HCl. Mater Chem Phys (2007);105:1–5.

DOI: 10.1016/j.matchemphys.2007.03.037

Google Scholar

[4] Ansari KR, Quraishi MA. Bis-Schiff bases of isatin as new and environmentally benign corrosion inhibitor for mild steel. J Ind Eng Chem (2014);20:2819–29.

DOI: 10.1016/j.jiec.2013.11.014

Google Scholar

[5] Elyor Berdimurodov, J Wang, Abduvali Kholikov, Khamdam Akbarov, Bakhtiyor Burikhonov, Nurbik Umirov, Investigation of a New Corrosion Inhibitor Cucurbiturils for Mild Steel in 10% Acidic Medium, Advanced Engineering Forum, Trans Tech Publications, Volume 18, pp.21-38, (2016). https://doi.org/10.4028/www.scientific.net/AEF.18.21.

DOI: 10.4028/www.scientific.net/aef.18.21

Google Scholar

[6] Karakus N, Sayin K. The investigation of corrosion inhibition efficiency on some benzaldehyde thiosemicarbazones and their thiole tautomers: Computational study. J Taiwan Inst Chem Eng (2014).

DOI: 10.1016/j.jtice.2014.10.024

Google Scholar

[7] Schmitt G. Application of inhibitors for acid media: Report prepared for the European Federation of Corrosion Working Party on inhibitors. Corros Eng Sci Techn (1984);19:65–176.

DOI: 10.1179/000705984798273100

Google Scholar

[8] Elyor Berdimurodov, Abduvali Kholikov, Khamdam Akbarov, Innat Nakhatov, Nigora Kh Jurakulova, Nurbek Umirov, Adsorption Isotherm and SEM Investigating of Cucurbit [n] Urils Based Corrosion Inhibitors with Gossypol for Mild Steel in Alkaline Media Containing Chloride Ions, Advanced Engineering Forum, Trans Tech Publications, Volume 23, pp.13-20, (2017). https://doi.org/10.4028/www.scientific.net/AEF.23.13.

DOI: 10.4028/www.scientific.net/aef.23.13

Google Scholar

[9] Abdallah M, Atwa ST, Salem MM, Fouda AS. Synergistic effect of some halide ions on the inhibition of zinc corrosion in hydrocchloric acid by tetrahydro carbazole derivatives compounds. Int J Electrochem Sci (2013); 8:10001–21.

Google Scholar

[10] Awad MK, Mustafa MR, Elnga MMA. Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface. J Mol Struct—THEOCHEM (2010);959:66–74.

DOI: 10.1016/j.theochem.2010.08.008

Google Scholar

[11] Elyor Berdimurodov, Abduvali Kholikov, Khamdam Akbarov, D Nuriddinova, Polarization Resistance Parameters of Anti-Corrosion Inhibitor of Cucurbit [N] Urils and Thioglycolurils in Aggressive Mediums, Advanced Engineering Forum, Trans Tech Publications, Volume 26, pp.74-86, (2018). https://doi.org/10.4028/www.scientific.net/AEF.26.74.

DOI: 10.4028/www.scientific.net/aef.26.74

Google Scholar

[12] R. He et al., Corrosion Inhibition Effect of PASP and Sulfuric Acid High Cerium on Copper in Citric Acid,, Advanced Materials Research, Vol. 681, pp.3-6, (2013). https://doi.org/10.4028/www.scientific.net/AMR.681.3.

DOI: 10.4028/www.scientific.net/amr.681.3

Google Scholar

[13] E.T. Berdimurodov., Kh.I. Akbarov, A.J. Kholikov, Physico-chemical investigation of mechanism of inhibition of steel corrosion by thioglycoluril, Universum: Chemistry and Biology, electronic scientific journal, (2018). № 3(45). http://7universum.com/ru/nature/archive/item/5559.

Google Scholar

[14] Lukovits I, Kalman E, Zucchi F. Corrosion inhibitors—Correlation between electronic structure and efficiency. Corrosion (2001);57:3–8.

DOI: 10.5006/1.3290328

Google Scholar

[15] Martinez S. Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms. Mater Chem Phys (2003);77:97–102.

DOI: 10.1016/s0254-0584(01)00569-7

Google Scholar

[16] Berdimurodov.E.T, Kh.I. Akbarov, A.J. Kholikov, Investigation new anticorrosion inhibitor 3A, 6A- bistolylthioglycoluril by using of new electrochemical method "Rp/Ec trend, Universum: Technological sciences, electronic scientific journal, (2018). № 2(47). http://7universum.com/ru/tech/archive/item/5539.

Google Scholar

[17] O.K. Abiola, N.C. Oforka, Adsorption of (4-amino-methyl-5-pyrimidinyl methylthio) acetic acid on mild steel from hydrochloric acid solution (HCl) – Part 1, Mater. Chem. Phys. 83 (2004) 315–322.

DOI: 10.1016/j.matchemphys.2003.10.001

Google Scholar

[18] Stoyanova A, Petkova G, Peyerimhoff SD. Correlation between the molecular structure and the corrosion inhibiting effect of some pyrophthalone compounds. Chem Phys (2002);279:1–6.

DOI: 10.1016/s0301-0104(02)00408-1

Google Scholar

[19] Rodrigez-Valdez LM, Martinez-Villafane A, Glossman-Mitnik D. Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties. J Mol Struct—THEOCHEM (2005);713:65–70.

DOI: 10.1016/j.theochem.2004.10.036

Google Scholar

[20] Berdimurodov E., Kholikov A., Akbarov H. Physico-Chemical Study of the Mechanism of Inhibition of the Corrosion of Steel Cucurbit [N] Uriles, Chemical Industry, Teza (Sank-Petersburg), Volume: 95, Number: 1, (2018), Pages: 38-42. https://elibrary.ru/item.asp?id=35290431.

Google Scholar

[21] Obot IB, Obi-Egbedi NO, Umoren SA. Adsorption characteristics and corrosion inhibitive properties of clotrimazole for aluminium corrosion in hydrochloric acid. Int J Electrochem Sci (2009); 4:863–77.

DOI: 10.1016/j.corsci.2008.11.013

Google Scholar

[22] Yan Y, Li W, Cai L, Hou B. Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1 M HCl solution. Electrochim Acta (2008);53:5953–60.

DOI: 10.1016/j.electacta.2008.03.065

Google Scholar

[23] Loto RT, Loto CA, Popoola API. Corrosion inhibition of thiourea and thiadiazole derivatives: A review. J Mater Environ Sci (2012);3:885–94.

Google Scholar

[24] K.R. Ansari, M.A. Quraishi, Experimental and computational studies of naphthyridine derivatives as corrosion inhibitor for N80 steel in 15% hydrochloric acid, Physica E 69 (2015) 322–331.

DOI: 10.1016/j.physe.2015.01.017

Google Scholar

[25] H. Hamani, T. Douadi, M. Al-Noaimi, S. Issaadi, D. Daoud, S. Chafa, Electrochemical and quantum chemical studies of some azomethine compounds as corrosion inhibitors for mild steel in 1 M hydrochloric acid, Corros. Sci. 88 (2014) 234–245.

DOI: 10.1016/j.corsci.2014.07.044

Google Scholar

[26] Elyor Tukhliyevich Berdimurodov, Hamdam Ikromovich Akbarov, Abduvali Jonuzakovich Kholikov, Nigora Jurakulova, Adsorption Mechanism Of The Cucurbit [N] Urils On The Mild Steel Surface In 10% Hcl Solution, Conference: World Science: Problems And Innovations, (2017), pp.81-83. https://elibrary.ru/item.asp?id=31250283.

DOI: 10.4028/www.scientific.net/aef.23.13

Google Scholar

[27] S.A. Abd El-Maksoud, A.S. Fouda, Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium, Mater. Chem. Phys. 93 (2005) 84–90.

DOI: 10.1016/j.matchemphys.2005.02.020

Google Scholar

[28] M. Doddahosuru Gurudatt, K.N. Mohana, Synthesis of new pyridine based 1,3,4-oxadiazole derivatives and their corrosion inhibition performance on mild steel in 0.5 M hydrochloric acid, Ind. Eng. Chem. Res. 53 (2014) 2092–2105.

DOI: 10.1021/ie402042d

Google Scholar

[29] Elyor Tukhliyevich Berdimurodov, Hamdam Ikromovich Akbarov, Abduvali Jonuzakovich Kholikov, Ulugbek Abdurakhmonovich Khurbanov, Reactivation Studies Of Anticorrosion Inhibitor Of 4, 5-Dihydroxy-4, 5-Bistolylimidazolidine-2-Thione In 5% Hcl Medium, Conference: Modern technologies: current issues, achievements and innovations, (2017), pp.14-16. https://elibrary.ru/item.asp?id=31245802.

Google Scholar

[30] A. Ghazoui, R. Saddik, N. Benchat, M. Guenbour, B. Hammouti, S.S. AlDeyab, A. Zarrouk, Comparative study of pyridine and pyrimidine derivatives as corrosion inhibitors of C38 steel in molar HCl, Int. J. Electrochem. Sci. 7 (2012) 7080–7097.

DOI: 10.1007/s11164-012-0763-y

Google Scholar

[31] O. Krim, A. Elidrissi, B. Hammouti, A. Ouslim, M. Benkaddour, Synthesis, characterization, and comparative study of pyridine derivatives as corrosion inhibitors of mild steel in HCl medium, Chem. Eng. Comm. 196 (2009) 1536–1546.

DOI: 10.1080/00986440903155451

Google Scholar

[32] Elyor Tukhliyevich Berdimurodov, Hamdam Ikromovich Akbarov, Abduvali Jonuzakovich Kholikov, Electrochemical Frequency Modulation Study 3a, 6a-Bistolylthioglycoluril, Conference: Basic and applied research: current issues, achievements and innovations, 2017, pp.54-56. https://elibrary.ru/item.asp?id=30617983.

Google Scholar

[33] B.D. Mert, A.O. Yüce, G. Kardas , B. Yazıcı, Inhibition effect of 2-amino-4-methylpyridine on mild steel corrosion: experimental and theoretical investigation, Corros. Sci. 85 (2014) 287–295.

DOI: 10.1016/j.corsci.2014.04.032

Google Scholar

[34] I.B. Obot, Quantum chemical assessment of the interaction of potential anticorrosion additives with steel surface, Innovation Corros. Mater. Sci. 4 (2014) 107–117.

Google Scholar

[35] H. Behzadi, P. Roonasi, M.J. Momeni, S. Manzetti, M.D. Esrafili, I.B. Obot, M. Yousefvand, S.M.M. Khoshdel, A DFT study of pyrazine derivatives and their Fe complexes in corrosion inhibition process, J. Mol. Struct. 1086 (2015) 64–72.

DOI: 10.1016/j.molstruc.2015.01.008

Google Scholar

[36] I.B. Obot, S.A. Umoren, Z.M. Gasem, R. Suleiman, B. El Ali, Theoretical prediction and electrochemical evaluation of vinylimidazoline and allylimidazoline as corrosion inhibitors for mild steel in 1 M HCl, J. Ind. Eng. Chem. 21 (2015) 1328–1339.

DOI: 10.1016/j.jiec.2014.05.049

Google Scholar

[37] E Berdimurodov, A Kholikov, Kh Akbarov, The 4,5-Dihydroxy-4,5-Bistolyl-Imidazolidine-2-Thione (DBIT) As A New Corrosion Inhibitor On Mild Steel In 10% Acidic Medium: By Using The Electrochemical And Scanning Electron Microscope (SEM), ILMIY AXBOROTNOMA, 2017, pp.80-84. http://www.samdu.uz/public/images/ilmiyjurnal/UTE84PZRPZ_ilmiy_jurnal.pdf#page=80.

DOI: 10.4028/www.scientific.net/aef.18.21

Google Scholar

[38] A. Anejjar, A. Zarrouk, R. Salghi, H. Zarrok, B. Hammouti, B. Elmahi, S. S. Al-Deyab, Studies on the inhibitive effect of the ammonium Iron (II) sulphate on the corrosion of carbon steel in HCl solution, J. Mater. Environ. Sci. 4 (2013) 583–592.

DOI: 10.1007/s11164-012-0892-3

Google Scholar

[39] G. Golestani, M. Shahidi, D. Ghazanfari, Electrochemical evaluation of antibacterial drugs as environment-friendly inhibitors for corrosion of carbon steel in HCl solution, Appl. Surf. Sci. 308 (2014) 347–362.

DOI: 10.1016/j.apsusc.2014.04.172

Google Scholar