Comparative Study of the Second Generation a-Si:H, CdTe, and CIGS Thin-Film Solar Cells

Article Preview

Abstract:

In this article, simulation results of novel and facilitated heterostructures of the Second Generation (2G) Thin-film Solar Cells (TFSCs): hydrogenated amorphous Silicon (a-Si:H), Cadmium Telluride (CdTe), and Copper Indium Gallium di-Selenide (Cu(In,Ga)Se2 or CIGS) have been presented to compare their performances. The solar cells have been modeled and analyzed for investigating optimized structure with higher stabilized efficiency. Entire simulations have been accomplished using Analysis of Microelectronic and Photonic Structures – 1 Dimensional (AMPS-1D) device simulator. The thickness of the absorber layer was varied from 50 nm to 1400 nm for a-Si:H and from 50 nm to 3 μm for both CdTe and CIGS cells to realize its impact on cell performance. The utmost efficiency, η of 9.134%, 20.776%, and 23.03% were achieved at AM 1.5 (1000 W/m2) for a-Si:H, CdTe, and CIGS material cells, respectively. Lastly, the operating temperature of the three cells was varied from 280°K to 328°K to realize its effect on the cell PV performances.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-111

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. J. Hibberd, Development of non-vacuum and low-cost techniques for Cu(In,Ga)(Se,S)2 thin film solar cell processing, Doctoral thesis, Loughborough University, UK, (2009).

Google Scholar

[2] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Solar cell efficiency tables (version 33), Progress in Photovoltaics: Research and Applications, Jan. 2009, Vol. 17, Issue 1, pp.85-94.

DOI: 10.1002/pip.880

Google Scholar

[3] Report: IEA-PVPS T13-02:2014, Characterization of performance of thin-film Photovoltaic Technologies, PVPS-Photovoltaic Power Systems Programme, IEA-International Energy Agency, May 2014, ISBN 978-3-906042-17-6.

DOI: 10.1541/ieejpes.134.nl6_3

Google Scholar

[4] S. Fonash, J. Arch, J. Cuiffi, J. Hou, W. Howland, P. McElheny, A. Moquin, M. Rogosky, T. Tran, H. Zhu, and F. Rubinelli, AMPS-1D Manual (BETA version 1.0), The Center for Nanotechnology Education and Utilization, The Pennsylvania State University, University Park, PA 16802, 2019 (Available at: http://www.empl.psu.edu/amps) (Last accessed on: Jan. 2019).

Google Scholar

[5] N. I. Sarkar, Design optimization of a-Si:H p-i-n, µc-Si:H p-i-n, and micromorph tandem PV cell, MS thesis, Renewable Energy Tech., Institute of Energy, Univ. of Dhaka, Bangladesh, Oct. (2016).

Google Scholar

[6] M. I. Kabir, S. A. Shahahmadi, V. Lim, S. Zaidi, K. Sopian, N. Amin, Amorphous Silicon single-junction thin-film solar cell exceeding 10% efficiency by design optimization, Int. J. of Photoenergy, Hindawi Publishing Corp., 2012, Article ID 460919,.

DOI: 10.1155/2012/460919

Google Scholar

[7] M. Gloeckler, Device Physics of Cu(In,Ga)Se2 thin-film solar cell, Doctoral thesis, Dept. of Physics, Colorado State University, (2005).

Google Scholar

[8] M. A. Matin, N. Amin, A. Zaharim, K. Sopian, Ultra thin high efficiency CdS/CdTe thin film solar cells from numerical analysis, NOLASC'09 Proceedings of the 8th WSEAS international conference on Non-linear analysis, non-linear systems and chaos, La Laguna, Spain, July 1-3, 2009, pp.338-344.

DOI: 10.1155/2010/578580

Google Scholar

[9] M. A. M. Bhuiyan, M. S. Islam, A. J. Datta, Modeling, simulation and optimization of high performance CIGS solar cell, Int. J. of Computer Applications, Nov. 2012, Vol. 57– No.16.

Google Scholar

[10] S. Sharma, K. K. Jain, A. Sharma, Solar Cells: In Research and Applications—A Review, Materials Sciences and Application, Dec. 2015, Vol. 6, pp.1145-1155.

Google Scholar

[11] L. A. Kosyachenko, Solar Cells – Thin-Film Technologies, InTech, 2011, ISBN 978-953-307-570-9.

Google Scholar

[12] D. E. Carlson, C. R. Wronski, Applied Physics Letters, 1976, Vol. 28, Issue 11, pp.671-673.

Google Scholar

[13] Toward a Just and Sustainable Solar Energy Industry, A Silicon Valley Toxics Coalition White Paper, Jan. 14, (2009).

Google Scholar

[14] A. Bensmain, H. Tayoub, B. Zebentout, Z. Benamara, Investigation of performance Silicon heterojunction solar cells using a-Si:H or a-SiC:H at Emitter layer through AMPS-1D simulations, Sensors & Transducers, May 2014, Vol. 27, Special Issue, pp.82-86.

Google Scholar

[15] A. Mirkamali, K. K. Muminov, K. Kabodov, Speech Steganography in Wavelet Domain Using Continuous Genetic Numerical Simulation of CdTe thin film solar Cell with AMPS-1D, J. of Math. and Computer Sc., Jun. 2014, Vol. 11, p.231–237.

DOI: 10.22436/jmcs.011.03.06

Google Scholar

[16] D. Y. Goswami, F. Kreith, Handbook of Energy Efficiency and Renewable Energy, CRC Press, May (2007).

Google Scholar

[17] A. Luque, and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2nd ed., John Wiley & Sons Ltd., Mar. 2011,.

Google Scholar

[18] M. M. A. Moon, M. F. Rahman, and A. B. M. Ismail, Optimization of active region thickness of CdTe/CdS Thin Film Superstrate Solar Cell to achieve ~25% efficiency: A simulation approach, Int. Conf. on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2-2018), Faculty of Engineering, Univ. of Rajshahi, Rajshahi, Bangladesh, Feb. 8-9, 2018,.

DOI: 10.1109/ic4me2.2018.8465600

Google Scholar

[19] L. A. Kosyachenko, Innovative Elastic Thin-Film Solar Cell Structures, in: M. Sibinski, K. Znajdek, Solar Cells - Thin-Film Technologies, InTech, 2011, chap. 12, ISBN: 978-953-307-570-9.

DOI: 10.5772/22103

Google Scholar

[20] X. Guo, Q. Tan, S. Liu, D. Qin, Y. Mo, L. Hou, A. Liu, H. Wu, Y. Ma, High-efficiency solution-processed CdTe nanocrystal solar cells incorporating a novel crosslinkable conjugated polymer as the hole transport layer, Nano Energy, 2018, Vol. 46, pp.150-157.

DOI: 10.1016/j.nanoen.2018.01.048

Google Scholar

[21] H. S. Ullal, K. Zweibel, B. G. Roedern, Polycrystalline thin-film photovoltaic technologies: From the laboratory to commercialization, NREL 0-7803-5772-8/00, IEEE, (2000).

DOI: 10.1109/pvsc.2000.915857

Google Scholar

[22] H. Ullah, B. Marí, H. N. Cui, Investigation on the effect of Gallium on the efficiency of CIGS solar cells through dedicated software, Applied Mechanics and Materials, 2014, Vol. 448, pp.1497-1501.

DOI: 10.4028/www.scientific.net/amm.448-453.1497

Google Scholar

[23] P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Compositional investigation of potassium doped Cu (In, Ga) Se2 solar cells with efficiencies up to 20.8%, Physica Status Solidi (RRL)-Rapid Research Letters, 2014,.

DOI: 10.1002/pssr.201409040

Google Scholar

[24] I. Bouchama, S. Boudour, N. Bouarissa, Z. Rouabah, Quantum and conversion efficiencies optimization of superstrate CIGS thin-films solar cells using In2Se3 buffer layer, Optical Materials, 2017, Vol. 72, pp.177-182,.

DOI: 10.1016/j.optmat.2017.05.056

Google Scholar

[25] Absorption Coefficient in a variety of Semiconductor materials at 300K as a function of vacuum wavelength of light, (Available at: http://www.pveducation.org/pvcdrom/absorption-coefficient) (Last accessed on: Jan. 2019).

Google Scholar