[1]
Sugarcane production in 2016, crops/regions/world list/production quantity (pick lists)". UN food and agriculture organization, corporate statistical database. FAOSTAT (2017).
Google Scholar
[2]
Gunawan, Bantacut T, Romli M, Noor E. Life Cycle Assessment of Cane-sugar in Indonesian Sugar Mill: Energy Use and GHG Emissions. IOP Conference Series: Materials Science and Engineering. Vol. 536(2019), p.012059.
DOI: 10.1088/1757-899x/536/1/012059
Google Scholar
[3]
Lee M, Lin Y-L; Chiueh P-T, Den W. Environmental and energy assessment of biomass residues to biochar as fuel: A brief review with recommendations for future bioenergy systems. Journal of Cleaner Production, Vol.251(2020), p.119714.
DOI: 10.1016/j.jclepro.2019.119714
Google Scholar
[4]
Sailesh A; Arunkumar R; Saravanan S. Mechanical properties and wear properties of kenaf–aloe vera–jute fiber reinforced natural fiber composites. Mater Today-Proc, Vol. 5 (2018), p.7184–7190.
DOI: 10.1016/j.matpr.2017.11.384
Google Scholar
[5]
A. Balea; N. Merayo; E. Fuente; C. Negro; M. Delgado-Aguilar; P. Mutje; A. Blanco. Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose, Vol. 25 (2018), p.1339–1351.
DOI: 10.1007/s10570-017-1618-x
Google Scholar
[6]
G. Annergren; S. Rydholm; S. Vardheim. Influence of raw material and pulping process on the chemical composition and physical properties of paper pulps. Svensk Papperstidning, Vol.66 (1962), pp.196-210.
Google Scholar
[7]
M. S. Sreekala; M. G. Saxena; S. Thomas. Water sorption in oil palm fiber reinforced phenol formaldehyde composites. Composites Part A Applied Science and Manufacturing., Vol. 33 (2002), pp.763-777.
DOI: 10.1016/s1359-835x(02)00032-5
Google Scholar
[8]
O. Anjos; A. Santos; R. Simões. Efeito do teor de xilanas na qualidade do papel produzido com fibra de Eucalipto Congresso florestal nacional. Viseu: Lisboa, (2005).
Google Scholar
[9]
E. Battistel, M. Morra, M. Marinetti. Enzymatic surface modification of acrylonitrile fibers. Appl. Surface Sci., Vol. 177 (2001), pp.32-41.
DOI: 10.1016/s0169-4332(01)00193-3
Google Scholar
[10]
W. D. Callister. Fundamentos da Ciência e Engenharia de Materiais: Uma Abordagem Integrada (2.ªed.). Rio de Janeiro: LTC - Livros Técnicos e Científicos Editora S.A, (2006).
Google Scholar
[11]
S. Lu; J.Yu; Y. Cheng; Q. Wang; A. Barras; W. Xu; S. Szunerits; D. Comu; R. Boukherroub. A review on the extraction of pineapple, sisal and abaca fibers and their use as reinforcement in polymer matrix, eXPRESS Polymer Letters, Vol.14(2020), p.309–335.
DOI: 10.3144/expresspolymlett.2020.27
Google Scholar
[12]
Md. T. Islam; S. C. Das; J. Saha; D. Paul; M. Islam; M. Rahman; M. A. Khan. Effect of Coconut Shell Powder as Filler on the Mechanical Properties of Coir-polyester Composites. Chemical and Materials Engineering, Vol.5(2017), pp.75-82.
DOI: 10.13189/cme.2017.050401
Google Scholar
[13]
P. Lokesh; T. S. A. S. Kumari; R. Gopi; G. B. Loganathan. A study on mechanical properties of bamboo fiber reinforced polymer composite. Materials Today: proceedings, Vol.22 (2020), pp.897-903.
DOI: 10.1016/j.matpr.2019.11.100
Google Scholar
[14]
S. Danielsson; M. E. Lindström. Influence of birch xylan adsorption during kraft cooking on softwood pulp strength, Nordic Pulp & Paper Res. Journal, Vol. 20 (2005), pp.436-441.
DOI: 10.3183/npprj-2005-20-04-p436-441
Google Scholar
[15]
T. Köhnke, P. Gatenholm. The effect of controlled glucouronoxylan adsorption on dryinginduced strength loss of bleached softwood pulp. Nordic Pulp & Paper Res. Journal, Vol. 22 (2007), pp.508-515.
DOI: 10.3183/npprj-2007-22-04-p508-515
Google Scholar
[16]
S.V. Klyuev; T.A. Khezhev; Y. V. Pukharenko; A.V. Klyuev. Fibers and their Properties for Concrete Reinforcement. Materials Science Forum, Vol. 945 (2019), pp.125-130.
DOI: 10.4028/www.scientific.net/msf.945.125
Google Scholar
[17]
T. Köhnke, C. Pujolràs; J. P; Roubroeks,; P. Gatenholm. The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres. Cellulose, 2008, Vol. 15 (2008), 537-546.
DOI: 10.1007/s10570-008-9209-5
Google Scholar
[18]
S. M. Luz; J. Delto Tio; G. J. R. Rcha; A. R. Gonçalves; A. P. Del'Arco. Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites:Effect of acetylation on mechanical and thermal properties. Composites: Part A, Vol. 39 (2008), pp.1362-1369.
DOI: 10.1016/j.compositesa.2008.04.014
Google Scholar
[19]
A. K. Mohanty; M. Misra; G. Hinrinchsen. Biofibers Biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, (2002).
Google Scholar
[20]
U. Molin, A. Teder. Importance of cellulose/ hemicellulose ratio for pulp strength. Nordic Pulp, (2002).
DOI: 10.3183/npprj-2002-17-01-p014-019
Google Scholar
[21]
M. Maniruzzaman; M.A. Rahman. M.A. Gafur; H. Fabritius; D. Raabe. Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers. Journal of Composite Materials, Vol. 46 (2011), pp.79-90.
DOI: 10.1177/0021998311410486
Google Scholar
[22]
E. M. A. Molina; G. Mogollón; J. L. Colodette. Efecto de las xilanas en la refinabilidad y propiedades físico-mecánicas de pulpa kraft de eucalyptus: Congreso iberoamericano de investigación em celulosa y papel. Guadalajara: Ciadicyp, (2008).
DOI: 10.5944/bicim2022.278
Google Scholar
[23]
Y. Liu; B. Sun; X. Zheng; L. Yu; J. Li. Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresource Technology, Vol. 247 (2018), pp.859-863.
DOI: 10.1016/j.biortech.2017.08.059
Google Scholar
[24]
R. Z. Khoo. Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review. Cellulose, Vol. 25, (2018), p.4303–4330.
DOI: 10.1007/s10570-018-1879-z
Google Scholar
[25]
A. Archana; M. V. P. Singh; S. Chozhavendhan; G. Gnanavel; S. Jeevitha; A. M. K (2020). Pandian. Coconut Shell as a Promising Resource for Future Biofuel Production. Biomass Valorization to Bioenergy. Biomass Valorization to Bioenergy. Energy, Environment, and Sustainability. Springer, Singapore.
DOI: 10.1007/978-981-15-0410-5_3
Google Scholar
[26]
J. H. Ryu; N. K. Han; J. S. Lee; Y. G. Jeong. Microstructure, thermal and mechanical properties of composite films based on carboxymethylated nanocellulose and polyacrylamide. Carbohydrate Polymers, Vol. 211(2019), pp.84-90.
DOI: 10.1016/j.carbpol.2019.01.109
Google Scholar
[27]
M. Tajika; H. J. Torshizia; H. Resalatib; Y. Hamzeh. Effects of cellulose nanofibrils and starch compared with polyacrylamide on fundamental properties of pulp and paper. Int J Biol Macromol, Vol. 192 (2021), pp.618-626.
DOI: 10.1016/j.ijbiomac.2021.09.199
Google Scholar
[28]
S. M. Sapuan, M. Harimi, M. A. Maleque. Mechanical properties of epoxy/coconut she llfiller particle composites. The Arabian Journal for Science and Engineering, Vol. 28, Number 2B, (2003).
Google Scholar
[29]
A. V. B. Oliveira; T. M. Rizzato; B. C. B. Barros; S. L. Favaro; W. Caetano; N. Hioka; V. R. Batistela. Physicochemical modifications of sugarcane and cassava agro-industrial wastes for applications as biosorbents. Bioresource Technology Reports, Vol. 7 (2019), p.100294.
DOI: 10.1016/j.biteb.2019.100294
Google Scholar
[30]
N. Shin; B. Stromberg. Xylan's impact on eucalyptus pulp yield and strength – Myth or reality? Workshop on chemical pulping process. Karlstand. Proceedings: Karlstand, (2006).
Google Scholar
[31]
X. Jin; Z. Hu; S. Wu; T. Song; F. Yue; Z. Xiang. Promoting the material properties of xylan-type hemicelluloses from the extraction step. Carbohydrate Polymers, Vol. 215 (2019), pp.235-245.
DOI: 10.1016/j.carbpol.2019.03.092
Google Scholar
[32]
R. P. Silva. Argamassas com adição de fibras de polipropileno – estudo do comportamento reológico e mecânico. Dissertação de Mestrado, São Paulo: Universidade de São Paulo, (2006).
DOI: 10.11606/d.3.2006.tde-17112006-141646
Google Scholar
[33]
Y. Su; R. Du; H. Guo; M. Cao; Q. Wu; R. Su; W. Qi; Z. He. Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: Characterization of its major componentes. Food and Bioproducts Processing, Vol. 94 (2015), pp.322-330.
DOI: 10.1016/j.fbp.2014.04.001
Google Scholar
[34]
I. Van de Weyenberg; J. Ivens; A. De Coster; B. Kino; E. Baetens; I. Verpoest. Influence of processing and chemical treatment of flax fibres on their composites. Comp. Sci. and Technology, Vol. 63 (2003), pp.1241-1246.
DOI: 10.1016/s0266-3538(03)00093-9
Google Scholar
[35]
Q. Yang; H. Zhan; S. Wang; S. Fu; K. Li. Modification of eucalyptus CTMP fibres with whiterot fungus Trametes hirsute – Effects on fibre morphology and paper physical strengths, Bio. Technology, Vol. 99 (2008), pp.8188-8124.
DOI: 10.1016/j.biortech.2008.03.029
Google Scholar
[36]
A. Vedrtnam; D. Gunwant. Modeling improved fatigue behavior of sugarcane fiber reinforced epoxy composite using novel treatment method. Composites Part B: Engineering, Vol. 175 (2019), p.107089.
DOI: 10.1016/j.compositesb.2019.107089
Google Scholar