Study of the Mechanical Properties of Sugar Cane Fiber for Packaging Paper Based on Polyacrylamide and Natural Fibers

Article Preview

Abstract:

Natural fibers have been extensively studied as a reinforcement filler in obtaining composites, replacing partially synthetic fibers. The vast majority of these materials originate from agro-industrial waste with a high content of lignin and cellulose making it a very interesting material with low cost and good mechanical properties. The purpose of the study was to obtain a composite based on alkyl ketene dimer resin, for the manufacture of sustainable packaging, made of paper by adding a 10% (w/w) con-tent of green coconut fiber and sugarcane bagasse fiber, and evaluated the impact of the filler on the mechanical behavior of the systems. The studied material was characterized from mechanical tests, such as Ring Crush Test (RCT) and Concora Medium Test (CMT) evaluating the maximum resistance supported by centimeter in the pre-pared composites, by the specimens. Through the RCT tests, with 10% w/w fibers, it was possible to verify that the fiber from sugarcane bagasse reached an increase of about 1% in the reinforcement effect compared to pure paper, and a difference of up to 2% in strength mechanics in relation to coir fiber, and CMT tests shows the reinforcement effect of the presence of sugarcane bagasse fiber, with an increase of about 3% compared to pure paper, and with a mechanical strength higher by 1% compared to coconut fiber. Therefore, the study was funneled with sugar cane fiber, varying the content by 20 and 30 % (w/w), evaluating the impact on the dispersion of this filler in the polymeric matrix and, consequently, the mechanical response of the composite with these compositions. The conclusion of the study was that the system prepared with 20% (w/w) was the one that achieved the greatest optimization of the mechanical properties, evaluated by the tests. This type of material can be applied to obtain cardboard boxes with resistance to high loads, due to the achievement of good mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-127

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sugarcane production in 2016, crops/regions/world list/production quantity (pick lists)". UN food and agriculture organization, corporate statistical database. FAOSTAT (2017).

Google Scholar

[2] Gunawan, Bantacut T, Romli M, Noor E. Life Cycle Assessment of Cane-sugar in Indonesian Sugar Mill: Energy Use and GHG Emissions. IOP Conference Series: Materials Science and Engineering. Vol. 536(2019), p.012059.

DOI: 10.1088/1757-899x/536/1/012059

Google Scholar

[3] Lee M, Lin Y-L; Chiueh P-T, Den W. Environmental and energy assessment of biomass residues to biochar as fuel: A brief review with recommendations for future bioenergy systems. Journal of Cleaner Production, Vol.251(2020), p.119714.

DOI: 10.1016/j.jclepro.2019.119714

Google Scholar

[4] Sailesh A; Arunkumar R; Saravanan S. Mechanical properties and wear properties of kenaf–aloe vera–jute fiber reinforced natural fiber composites. Mater Today-Proc, Vol. 5 (2018), p.7184–7190.

DOI: 10.1016/j.matpr.2017.11.384

Google Scholar

[5] A. Balea; N. Merayo; E. Fuente; C. Negro; M. Delgado-Aguilar; P. Mutje; A. Blanco. Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose, Vol. 25 (2018), p.1339–1351.

DOI: 10.1007/s10570-017-1618-x

Google Scholar

[6] G. Annergren; S. Rydholm; S. Vardheim. Influence of raw material and pulping process on the chemical composition and physical properties of paper pulps. Svensk Papperstidning, Vol.66 (1962), pp.196-210.

Google Scholar

[7] M. S. Sreekala; M. G. Saxena; S. Thomas. Water sorption in oil palm fiber reinforced phenol formaldehyde composites. Composites Part A Applied Science and Manufacturing., Vol. 33 (2002), pp.763-777.

DOI: 10.1016/s1359-835x(02)00032-5

Google Scholar

[8] O. Anjos; A. Santos; R. Simões. Efeito do teor de xilanas na qualidade do papel produzido com fibra de Eucalipto Congresso florestal nacional. Viseu: Lisboa, (2005).

Google Scholar

[9] E. Battistel, M. Morra, M. Marinetti. Enzymatic surface modification of acrylonitrile fibers. Appl. Surface Sci., Vol. 177 (2001), pp.32-41.

DOI: 10.1016/s0169-4332(01)00193-3

Google Scholar

[10] W. D. Callister. Fundamentos da Ciência e Engenharia de Materiais: Uma Abordagem Integrada (2.ªed.). Rio de Janeiro: LTC - Livros Técnicos e Científicos Editora S.A, (2006).

Google Scholar

[11] S. Lu; J.Yu; Y. Cheng; Q. Wang; A. Barras; W. Xu; S. Szunerits; D. Comu; R. Boukherroub. A review on the extraction of pineapple, sisal and abaca fibers and their use as reinforcement in polymer matrix, eXPRESS Polymer Letters, Vol.14(2020), p.309–335.

DOI: 10.3144/expresspolymlett.2020.27

Google Scholar

[12] Md. T. Islam; S. C. Das; J. Saha; D. Paul; M. Islam; M. Rahman; M. A. Khan. Effect of Coconut Shell Powder as Filler on the Mechanical Properties of Coir-polyester Composites. Chemical and Materials Engineering, Vol.5(2017), pp.75-82.

DOI: 10.13189/cme.2017.050401

Google Scholar

[13] P. Lokesh; T. S. A. S. Kumari; R. Gopi; G. B. Loganathan. A study on mechanical properties of bamboo fiber reinforced polymer composite. Materials Today: proceedings, Vol.22 (2020), pp.897-903.

DOI: 10.1016/j.matpr.2019.11.100

Google Scholar

[14] S. Danielsson; M. E. Lindström. Influence of birch xylan adsorption during kraft cooking on softwood pulp strength, Nordic Pulp & Paper Res. Journal, Vol. 20 (2005), pp.436-441.

DOI: 10.3183/npprj-2005-20-04-p436-441

Google Scholar

[15] T. Köhnke, P. Gatenholm. The effect of controlled glucouronoxylan adsorption on dryinginduced strength loss of bleached softwood pulp. Nordic Pulp & Paper Res. Journal, Vol. 22 (2007), pp.508-515.

DOI: 10.3183/npprj-2007-22-04-p508-515

Google Scholar

[16] S.V. Klyuev; T.A. Khezhev; Y. V. Pukharenko; A.V. Klyuev. Fibers and their Properties for Concrete Reinforcement. Materials Science Forum, Vol. 945 (2019), pp.125-130.

DOI: 10.4028/www.scientific.net/msf.945.125

Google Scholar

[17] T. Köhnke, C. Pujolràs; J. P; Roubroeks,; P. Gatenholm. The effect of barley husk arabinoxylan adsorption on the properties of cellulose fibres. Cellulose, 2008, Vol. 15 (2008), 537-546.

DOI: 10.1007/s10570-008-9209-5

Google Scholar

[18] S. M. Luz; J. Delto Tio; G. J. R. Rcha; A. R. Gonçalves; A. P. Del'Arco. Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites:Effect of acetylation on mechanical and thermal properties. Composites: Part A, Vol. 39 (2008), pp.1362-1369.

DOI: 10.1016/j.compositesa.2008.04.014

Google Scholar

[19] A. K. Mohanty; M. Misra; G. Hinrinchsen. Biofibers Biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, (2002).

Google Scholar

[20] U. Molin, A. Teder. Importance of cellulose/ hemicellulose ratio for pulp strength. Nordic Pulp, (2002).

DOI: 10.3183/npprj-2002-17-01-p014-019

Google Scholar

[21] M. Maniruzzaman; M.A. Rahman. M.A. Gafur; H. Fabritius; D. Raabe. Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers. Journal of Composite Materials, Vol. 46 (2011), pp.79-90.

DOI: 10.1177/0021998311410486

Google Scholar

[22] E. M. A. Molina; G. Mogollón; J. L. Colodette. Efecto de las xilanas en la refinabilidad y propiedades físico-mecánicas de pulpa kraft de eucalyptus: Congreso iberoamericano de investigación em celulosa y papel. Guadalajara: Ciadicyp, (2008).

DOI: 10.5944/bicim2022.278

Google Scholar

[23] Y. Liu; B. Sun; X. Zheng; L. Yu; J. Li. Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresource Technology, Vol. 247 (2018), pp.859-863.

DOI: 10.1016/j.biortech.2017.08.059

Google Scholar

[24] R. Z. Khoo. Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review. Cellulose, Vol. 25, (2018), p.4303–4330.

DOI: 10.1007/s10570-018-1879-z

Google Scholar

[25] A. Archana; M. V. P. Singh; S. Chozhavendhan; G. Gnanavel; S. Jeevitha; A. M. K (2020). Pandian. Coconut Shell as a Promising Resource for Future Biofuel Production. Biomass Valorization to Bioenergy. Biomass Valorization to Bioenergy. Energy, Environment, and Sustainability. Springer, Singapore.

DOI: 10.1007/978-981-15-0410-5_3

Google Scholar

[26] J. H. Ryu; N. K. Han; J. S. Lee; Y. G. Jeong. Microstructure, thermal and mechanical properties of composite films based on carboxymethylated nanocellulose and polyacrylamide. Carbohydrate Polymers, Vol. 211(2019), pp.84-90.

DOI: 10.1016/j.carbpol.2019.01.109

Google Scholar

[27] M. Tajika; H. J. Torshizia; H. Resalatib; Y. Hamzeh. Effects of cellulose nanofibrils and starch compared with polyacrylamide on fundamental properties of pulp and paper. Int J Biol Macromol, Vol. 192 (2021), pp.618-626.

DOI: 10.1016/j.ijbiomac.2021.09.199

Google Scholar

[28] S. M. Sapuan, M. Harimi, M. A. Maleque. Mechanical properties of epoxy/coconut she llfiller particle composites. The Arabian Journal for Science and Engineering, Vol. 28, Number 2B, (2003).

Google Scholar

[29] A. V. B. Oliveira; T. M. Rizzato; B. C. B. Barros; S. L. Favaro; W. Caetano; N. Hioka; V. R. Batistela. Physicochemical modifications of sugarcane and cassava agro-industrial wastes for applications as biosorbents. Bioresource Technology Reports, Vol. 7 (2019), p.100294.

DOI: 10.1016/j.biteb.2019.100294

Google Scholar

[30] N. Shin; B. Stromberg. Xylan's impact on eucalyptus pulp yield and strength – Myth or reality? Workshop on chemical pulping process. Karlstand. Proceedings: Karlstand, (2006).

Google Scholar

[31] X. Jin; Z. Hu; S. Wu; T. Song; F. Yue; Z. Xiang. Promoting the material properties of xylan-type hemicelluloses from the extraction step. Carbohydrate Polymers, Vol. 215 (2019), pp.235-245.

DOI: 10.1016/j.carbpol.2019.03.092

Google Scholar

[32] R. P. Silva. Argamassas com adição de fibras de polipropileno – estudo do comportamento reológico e mecânico. Dissertação de Mestrado, São Paulo: Universidade de São Paulo, (2006).

DOI: 10.11606/d.3.2006.tde-17112006-141646

Google Scholar

[33] Y. Su; R. Du; H. Guo; M. Cao; Q. Wu; R. Su; W. Qi; Z. He. Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: Characterization of its major componentes. Food and Bioproducts Processing, Vol. 94 (2015), pp.322-330.

DOI: 10.1016/j.fbp.2014.04.001

Google Scholar

[34] I. Van de Weyenberg; J. Ivens; A. De Coster; B. Kino; E. Baetens; I. Verpoest. Influence of processing and chemical treatment of flax fibres on their composites. Comp. Sci. and Technology, Vol. 63 (2003), pp.1241-1246.

DOI: 10.1016/s0266-3538(03)00093-9

Google Scholar

[35] Q. Yang; H. Zhan; S. Wang; S. Fu; K. Li. Modification of eucalyptus CTMP fibres with whiterot fungus Trametes hirsute – Effects on fibre morphology and paper physical strengths, Bio. Technology, Vol. 99 (2008), pp.8188-8124.

DOI: 10.1016/j.biortech.2008.03.029

Google Scholar

[36] A. Vedrtnam; D. Gunwant. Modeling improved fatigue behavior of sugarcane fiber reinforced epoxy composite using novel treatment method. Composites Part B: Engineering, Vol. 175 (2019), p.107089.

DOI: 10.1016/j.compositesb.2019.107089

Google Scholar