Structure, Property, Processing and Applications of Fire Retardant Materials: A Brief Review

Article Preview

Abstract:

Fire though an important component of life, the devastating effect of fire accidents is a threat to life and materials. Thus, the prevention and control of fire are becoming a serious concern. Hence, it is no wonder that fire retardant materials (FRMs) are slowly becoming ubiquitous in our daily lives. To control the fire in an unexpected fire accident or to prevent fire accidents FRMs are becoming essential requirements. To save material or life, fire retardant materials have been used for long knowingly or unknowingly. However, the understandings of chemistry and thermochemistry of materials helped for the development of efficient FRMs. Diversified materials, processing methods, and application modes have been developed, and all of them become specific depending on the nature and origin of the fire. In this regard, the inorganic FRMs form a distinct category due to their low cost, easier processing and wider choice of application mode without leaving any additional environmental burden either to land or the atmosphere. In this paper, different fire retardant materials and their properties with the abilities to tackle the fire at different temperatures are reviewed. The primary characteristics of fire and the thermal behaviours of FRMs as well as changes in behaviour/properties when FRMs are treated with certain synergistic systems are discussed. The importance of composition, morphology and structure of FRMs on the efficiency and applicability are discussed. Recent developments on the synthesis and characterisation of different types of FRMs and their composites have been elaborated. The effective applications and the commercial products based on their properties are also briefly covered. Overall, the review provides an overview of existing information on fire retardant materials in terms of their synthesis, processing, usability and limitations, with a prime attention on the process-structure-property relations of these materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-116

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liodakis, S. and M. Tsoukala, Environmental benefits of using magnesium carbonate minerals as new wildfire retardants instead of commercially available, phosphate-based compounds, Environ Geochem Health, 32 (2010) 391-9.

DOI: 10.1007/s10653-009-9283-0

Google Scholar

[2] Fulekar, M., B. Pathak, and R.K. Kale, Environment and sustainable development, (2014).

Google Scholar

[3] Bajaj, P., Fire-retardant materials, Bulletin of Materials Science, 15 (1992) 67-76.

Google Scholar

[4] Drysdale, D., An introduction to fire dynamics, (2011).

Google Scholar

[5] Hartin, E., Fire development and fire behavior indicators, (2005).

Google Scholar

[6] Hull, R., The development of sustainable fire retardant materials, 35 (2016) 321-332.

Google Scholar

[7] Xiao, W.-D. and K.A. Kibble, Comparison of aluminium hydroxide and magnesium hydroxide as flame retardants in SEBS-based composites, Polymers and Polymer Composites, 16 (2008) 415-422.

DOI: 10.1177/096739110801600702

Google Scholar

[8] Kim, S., Flame retardancy and smoke suppression of magnesium hydroxide filled polyethylene, Journal of Polymer Science Part B: Polymer Physics, 41 (2003) 936-944.

DOI: 10.1002/polb.10453

Google Scholar

[9] Horrocks, A.R. and D. Price, Fire retardant materials, (2001).

Google Scholar

[10] Brown, S., Flame retardants: Inorganic oxide and hydroxide systems, Plastics Additives, (1998) 287-296.

DOI: 10.1007/978-94-011-5862-6_32

Google Scholar

[11] Elbasuney, S., Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH), Powder Technology, 305 (2017) 538-545.

DOI: 10.1016/j.powtec.2016.10.038

Google Scholar

[12] Walter, M.D. and M.T. Wajer, Overview of flame retardants including magnesium hydroxide, Martin Marietta Magnesia Specialties, (2015).

Google Scholar

[13] Kay, T., B. Kirby, and R. Preston, Calculation of the heating rate of an unprotected steel member in a standard fire resistance test, Fire Safety Journal, 26 (1996) 327-350.

DOI: 10.1016/s0379-7112(96)00016-1

Google Scholar

[14] Harmathy, T., The fire resistance test and its relation to real‐world fires, Fire and Materials, 5 (1981) 112-122.

DOI: 10.1002/fam.810050306

Google Scholar

[15] Hull, T.R., A. Witkowski, and L. Hollingbery, Fire retardant action of mineral fillers, Polymer Degradation and Stability, 96 (2011) 1462-1469.

DOI: 10.1016/j.polymdegradstab.2011.05.006

Google Scholar

[16] Moody, C.A. and J.A. Field, Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams, Environmental science & technology, 34 (2000) 3864-3870.

DOI: 10.1021/es991359u

Google Scholar

[17] Gardiner, B., B.Z. Dlugogorski, and G. Jameson, Rheology of fire-fighting foams, Fire Safety Journal, 31 (1998) 61-75.

DOI: 10.1016/s0379-7112(97)00049-0

Google Scholar

[18] Kalabokidis, K.D., Effects of wildfire suppression chemicals on people and the environment—a review, Global Nest: The International Journal, 2 (2000) 129-137.

Google Scholar

[19] Rahimi, H., et al., Processing and properties of GPTMS-TEOS hybrid coatings on 5083 aluminium alloy, Advanced Materials Research, 239 (2011) 736-742.

DOI: 10.4028/www.scientific.net/amr.239-242.736

Google Scholar

[20] Hewitt, F., et al., An experimental and numerical model for the release of acetone from decomposing EVA containing aluminium, magnesium or calcium hydroxide fire retardants, Polymer Degradation and Stability, 127 (2016) 65-78.

DOI: 10.1016/j.polymdegradstab.2016.01.007

Google Scholar

[21] Hollingbery, L.A. and T.R. Hull, The thermal decomposition of huntite and hydromagnesite—A review, Thermochimica Acta, 509 (2010) 1-11.

DOI: 10.1016/j.tca.2010.06.012

Google Scholar

[22] Schoen, R. and C.E. Roberson, Structures of aluminum hydroxide and geochemical implications, American Mineralogist: Journal of Earth and Planetary Materials, 55 (1970) 43-77.

Google Scholar

[23] Saalfeld, H. and M. Wedde, Refinement of the crystal structure of gibbsite, AI(OH)3, ZeitschriftfUrKristallographie, Bd, 139 (1974) 129-135.

DOI: 10.1524/zkri.1974.139.1-2.129

Google Scholar

[24] Földvári, M., Handbook of thermogravimetric system of minerals and its use in geological practice, 213 (2011).

Google Scholar

[25] Laoutid, F., et al., Study of hydromagnesite and magnesium hydroxide based fire retardant systems for ethylene–vinyl acetate containing organo-modified montmorillonite, Polymer Degradation and Stability, 91 (2006) 3074-3082.

DOI: 10.1016/j.polymdegradstab.2006.08.011

Google Scholar

[26] Jin, D., et al., Hydrothermal synthesis and characterization of hexagonal Mg(OH)2 nano-flake as a flame retardant, Materials Chemistry and Physics, 112 (2008) 962-965.

DOI: 10.1016/j.matchemphys.2008.07.058

Google Scholar

[27] Thirumal, M., et al., Halogen-free flame retardant PUF: Effect of melamine compounds on mechanical, thermal and flame retardant properties, Polymer Degradation and Stability, 95 (2010) 1138-1145.

DOI: 10.1016/j.polymdegradstab.2010.01.035

Google Scholar

[28] Chiu, S.H. and W.K. Wang, The dynamic flammability and toxicity of magnesium hydroxide filled intumescent fire retardant polypropylene, Journal of Applied Polymer Science, 67 (1998) 989-995.

DOI: 10.1002/(sici)1097-4628(19980207)67:6<989::aid-app4>3.0.co;2-i

Google Scholar

[29] Seeger, M., et al., Magnesium Compounds, (2011).

Google Scholar

[30] Chowdhury, A. and J. Kumar, Structural, thermal, dielectric studies on sol–gel derived MgO from non-alkoxide route, Materials science and technology, 22 (2006) 1249-1254.

DOI: 10.1179/174328406x129896

Google Scholar

[31] Lenża, J., K. Merkel, and H. Rydarowski, Comparison of the effect of montmorillonite, magnesium hydroxide and a mixture of both on the flammability properties and mechanism of char formation of HDPE composites, Polymer Degradation and Stability, 97 (2012) 2581-2593.

DOI: 10.1016/j.polymdegradstab.2012.07.010

Google Scholar

[32] Hojjati Najafabadi, A., et al., Mechanical property evaluation of corrosion protection sol–gel nanocomposite coatings, Surface engineering, 29 (2013) 249-254.

DOI: 10.1179/1743294412y.0000000080

Google Scholar

[33] Mahmoodi, S., et al., Quality enhancement of copper oxide thin film synthesized under elevated gravity acceleration by two-axis spin coating, Ceramics International, 46 (2020) 7421-7429.

DOI: 10.1016/j.ceramint.2019.11.238

Google Scholar

[34] Ji, W., et al., Mg (OH) 2 and PDMS-coated cotton fabrics for excellent oil/water separation and flame retardancy, Cellulose, 26 (2019) 6879-6890.

DOI: 10.1007/s10570-019-02576-w

Google Scholar

[35] Pilarska, A.A., Ł. Klapiszewski, and T. Jesionowski, Recent development in the synthesis, modification and application of Mg (OH) 2 and MgO: A review, Powder Technology, 319 (2017) 373-407.

DOI: 10.1016/j.powtec.2017.07.009

Google Scholar

[36] Wang, M., et al., Transparent aqueous Mg (OH) 2 nanodispersion for transparent and flexible polymer film with enhanced flame-retardant property, Industrial & Engineering Chemistry Research, 54 (2015) 12805-12812.

DOI: 10.1021/acs.iecr.5b03172

Google Scholar

[37] Jin, D., et al., Hydrothermal synthesis and characterization of hexagonal Mg (OH) 2 nano-flake as a flame retardant, Materials Chemistry and Physics, 112 (2008) 962-965.

DOI: 10.1016/j.matchemphys.2008.07.058

Google Scholar

[38] Hornsby, P.R., Fire retardant fillers for polymers, International Materials Reviews, 46 (2001) 199-210.

DOI: 10.1179/095066001771048763

Google Scholar

[39] Matusinovic, Z. and C.A. Wilkie, Fire retardancy and morphology of layered double hydroxide nanocomposites: a review, Journal of Materials Chemistry, 22 (2012) 18701.

DOI: 10.1039/c2jm33179a

Google Scholar

[40] Iqbal, M.A. and M. Fedel, Effect of synthesis conditions on the controlled growth of MgAl–LDH corrosion resistance film: structure and corrosion resistance properties, Coatings, 9 (2019) 30.

DOI: 10.3390/coatings9010030

Google Scholar

[41] QIQI, Z., et al., Poly (vinyl alcohol)/hydrotalcite composite nanofibre: preparation and characterization, (2011).

Google Scholar

[42] Auerbach, S.M., K.A. Carrado, and P.K. Dutta, Handbook of layered materials, (2004).

Google Scholar

[43] Najafabadi, A.H., A. Ghasemi, and R. Mozaffarinia, Development of novel magnetic-dielectric ceramics for enhancement of reflection loss in X band, Ceramics International, 42 (2016) 13625-13634.

DOI: 10.1016/j.ceramint.2016.05.157

Google Scholar

[44] Costa, F.R., et al., Layered Double Hydroxide Based Polymer Nanocomposites, 210 (2007) 101-168.

Google Scholar

[45] Anthony, J.W., et al., Handbook of Mineralogy, Mineralogical Society of America, Chantilly, VA 20151e1110, USA, e2005. Mineral Data Publishing, Version, 1 (2005) (2001).

Google Scholar

[46] Yu, G., et al., Dehydration and dehydroxylation of layered double hydroxides: new insights from solid-state NMR and FT-IR studies of deuterated samples, The Journal of Physical Chemistry C, 119 (2015) 12325-12334.

DOI: 10.1021/acs.jpcc.5b01449

Google Scholar

[47] Yang, W., et al., A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide, Chemical Engineering Science, 57 (2002) 2945-2953.

DOI: 10.1016/s0009-2509(02)00185-9

Google Scholar

[48] Wang, Q., et al., Synthesis of ultrafine layered double hydroxide (LDHs) nanoplates using a continuous-flow hydrothermal reactor, Nanoscale, 5 (2013) 114-117.

DOI: 10.1039/c2nr32568c

Google Scholar

[49] Yu, J., et al., Preparation of two dimensional layered double hydroxide nanosheets and their applications, Chemical Society Reviews, 46 (2017) 5950-5974.

DOI: 10.1039/c7cs00318h

Google Scholar

[50] Wang, D.-Y., et al., Structural characteristics and flammability of fire retarding EPDM/layered double hydroxide (LDH) nanocomposites, RSC advances, 2 (2012) 3927-3933.

DOI: 10.1039/c2ra20189e

Google Scholar

[51] Khachani, M., et al., Non-isothermal kinetic and thermodynamic studies of the dehydroxylation process of synthetic calcium hydroxide Ca (OH) 2, J. Mater. Environ. Sci, 5 (2014) 615-624.

Google Scholar

[52] Hollingbery, L. and T.R. Hull, The thermal decomposition of natural mixtures of huntite and hydromagnesite, Thermochimica acta, 528 (2012) 45-52.

DOI: 10.1016/j.tca.2011.11.002

Google Scholar

[53] Hollingbery, L. and T.R. Hull, The fire retardant behaviour of huntite and hydromagnesite–A review, Polymer degradation and stability, 95 (2010) 2213-2225.

DOI: 10.1016/j.polymdegradstab.2010.08.019

Google Scholar

[54] Michels, A. and J. Strijland, The specific heat at constant volume of compressed carbon dioxide, Physica, 18 (1952) 613-628.

DOI: 10.1016/s0031-8914(52)80061-8

Google Scholar

[55] Specific Heat and Individual Gas Constant of Gases, Engineering ToolBox, (2003).

Google Scholar

[56] Zhang, Z., et al., Synthesis and shape evolution of monodisperse basic magnesium carbonate microspheres, Crystal growth & design, 7 (2007) 337-342.

DOI: 10.1021/cg060544y

Google Scholar

[57] Evelyn, F.W.T.J.R., Calcium carbonate: from the Cretaceous period into the 21st century, (2001).

Google Scholar

[58] Arun, A., L. Kumar, and A. Chowdhury, Structure‐property relations for a phase‐pure, nanograined tetragonal zirconia ceramic stabilized with minimum CaO doping, Journal of the American Ceramic Society, 104 (2021) 3497-3507.

DOI: 10.1111/jace.17683

Google Scholar

[59] Sun, J., et al., Stabilized CO2 capture performance of wet mechanically activated dolomite, Fuel, 222 (2018) 334-342.

DOI: 10.1016/j.fuel.2018.02.162

Google Scholar

[60] Maitra, S., et al., Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal condition, Journal of Materials Science, 40 (2005) 4749-4751.

DOI: 10.1007/s10853-005-0843-0

Google Scholar

[61] Liodakis, S., I. Antonopoulos, and T. Kakardakis, Evaluating the use of minerals as forest fire retardants, Fire Safety Journal, 45 (2010) 98-105.

DOI: 10.1016/j.firesaf.2009.11.002

Google Scholar

[62] Teir, S., et al., Fixation of carbon dioxide by producing hydromagnesite from serpentinite, Applied Energy, 86 (2009) 214-218.

DOI: 10.1016/j.apenergy.2008.03.013

Google Scholar

[63] Ming, D.W. and W.T. Franklin, Synthesis and characterization of lansfordite and nesquehonite, Soil Science Society of America Journal, 49 (1985) 1303-1308.

DOI: 10.2136/sssaj1985.03615995004900050046x

Google Scholar

[64] Kandola, B., et al., Development of a novel experimental technique for quantitative study of melt dripping of themoplastic polymers, Polymer degradation and stability, 98 (2013) 52-63.

DOI: 10.1016/j.polymdegradstab.2012.10.028

Google Scholar

[65] Li, S., et al., Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid), Polymers for Advanced Technologies, 20 (2009) 1114-1120.

DOI: 10.1002/pat.1372

Google Scholar

[66] Zhang, A., et al., Synthesis and characterization of TiO 2-montmorillonite nanocomposites and their photocatalytic activity, Kinetics and Catalysis, 51 (2010) 529-533.

Google Scholar

[67] Mansoorianfar, M., et al., Amorphous/crystalline phase control of nanotubular TiO2 membranes via pressure-engineered anodizing, Materials & Design, 198 (2021) 109314.

DOI: 10.1016/j.matdes.2020.109314

Google Scholar

[68] Liu, Y., et al., Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina, Materials Letters, 62 (2008) 1297-1301.

DOI: 10.1016/j.matlet.2007.08.067

Google Scholar

[69] Vaidya, S., et al., New polymorphs of alumina: Part II μ and λ alumina, International Journal of High Pressure Research, 16 (1999) 265-278.

DOI: 10.1080/08957959908200299

Google Scholar

[70] Vijayan, D., A. Mathiazhagan, and R. Joseph, Aluminium trihydroxide: Novel reinforcing filler in Polychloroprene rubber, Polymer, 132 (2017) 143-156.

DOI: 10.1016/j.polymer.2017.10.058

Google Scholar

[71] Mariappan, T., Fire Retardant Coatings, New Technologies in Protective Coatings,[Carlos Giudice and Guadalupe Canosa, IntechOpen], (2017) 101-122.

DOI: 10.5772/67675

Google Scholar

[72] Dhaouadi, H., H. Chaabane, and F. Touati, Mg (OH) 2 nanorods synthesized by a facile hydrothermal method in the presence of CTAB, Nano-Micro Letters, 3 (2011) 153-159.

DOI: 10.1007/bf03353666

Google Scholar

[73] Yan, C., et al., Preparation of magnesium hydroxide nanoflowers, Journal of Crystal Growth, 282 (2005) 448-454.

DOI: 10.1016/j.jcrysgro.2005.05.038

Google Scholar

[74] Henrist, C., et al., Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution, Journal of Crystal Growth, 249 (2003) 321-330.

DOI: 10.1016/s0022-0248(02)02068-7

Google Scholar

[75] Elbasuney, S. and S.F. Mostafa, Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher, Powder Technology, 278 (2015) 72-83.

DOI: 10.1016/j.powtec.2015.03.013

Google Scholar

[76] Li, Y., et al., Preparation of Mg (OH) 2 nanorods, Advanced Materials, 12 (2000) 818-821.

Google Scholar

[77] Wu, H., et al., Microwave-assisted synthesis of fibre-like Mg (OH) 2 nanoparticles in aqueous solution at room temperature, Materials Letters, 58 (2004) 2166-2169.

DOI: 10.1016/j.matlet.2004.01.010

Google Scholar

[78] Alavi, M.A. and A. Morsali, Syntheses and characterization of Mg (OH) 2 and MgO nanostructures by ultrasonic method, Ultrasonics Sonochemistry, 17 (2010) 441-446.

DOI: 10.1016/j.ultsonch.2009.08.013

Google Scholar

[79] Liang, C., et al., Pulsed-laser ablation of Mg in liquids: surfactant-directing nanoparticle assembly for magnesium hydroxide nanostructures, Chemical physics letters, 389 (2004) 58-63.

DOI: 10.1016/j.cplett.2004.03.056

Google Scholar

[80] Wang, D.-G., et al., Synthesis of nano-platelets of modified aluminium hydroxide by high-gravity reactive precipitation and hydrothermal method, Materials Chemistry and Physics, 107 (2008) 426-430.

DOI: 10.1016/j.matchemphys.2007.08.014

Google Scholar

[81] Wang, D.-G., et al., Preparation of nano aluminium trihydroxide by high gravity reactive precipitation, Chemical Engineering Journal, 121 (2006) 109-114.

DOI: 10.1016/j.cej.2006.05.016

Google Scholar

[82] Kazantsev, S., et al., Preparation of aluminum hydroxide and oxide nanostructures with controllable morphology by wet oxidation of AlN/Al nanoparticles, Materials Research Bulletin, 104 (2018) 97-103.

DOI: 10.1016/j.materresbull.2018.04.011

Google Scholar

[83] Giudice, C. and G. Canosa, New technologies in protective coatings, (2017).

Google Scholar

[84] Panias, D. and A. Krestou, Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions, Powder Technology, 175 (2007) 163-173.

DOI: 10.1016/j.powtec.2007.01.028

Google Scholar

[85] Fan, W. and W. Li, Morphology-control techniques for preparing aluminum hydroxide via wet chemical synthesis, Hydrometallurgy, 192 (2020) 105256.

DOI: 10.1016/j.hydromet.2020.105256

Google Scholar

[86] Elbasuney, S., Continuous hydrothermal synthesis of AlO (OH) nanorods as a clean flame retardant agent, Particuology, 22 (2015) 66-71.

DOI: 10.1016/j.partic.2014.11.011

Google Scholar

[87] Seeger, M., et al., Magnesium compounds, Ullmann's Encyclopedia of Industrial Chemistry, (2000).

Google Scholar

[88] Yang, Y.-F., et al., Effects of stearic acid on synthesis of magnesium hydroxide via direct precipitation, Journal of crystal growth, 310 (2008) 3557-3560.

DOI: 10.1016/j.jcrysgro.2008.05.006

Google Scholar

[89] Dong, C., et al., Investigation of Mg (OH) 2 nanoparticles as an antibacterial agent, Journal of Nanoparticle Research, 12 (2010) 2101-2109.

Google Scholar

[90] Tai, C.Y., et al., Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor, Industrial & engineering chemistry research, 46 (2007) 5536-5541.

DOI: 10.1021/ie060869b

Google Scholar

[91] Taglieri, G., et al., Mg (OH) 2 nanoparticles produced at room temperature by an innovative, facile, and scalable synthesis route, Journal of Nanoparticle Research, 17 (2015) 411.

DOI: 10.1007/s11051-015-3212-1

Google Scholar

[92] Hojjati-Najafabadi, A., et al., A Tramadol Drug Electrochemical Sensor Amplified by Biosynthesized Au Nanoparticle Using Mentha aquatic Extract and Ionic Liquid, Topics in Catalysis, (2021) 1-8.

DOI: 10.1007/s11244-021-01498-x

Google Scholar

[93] Hojjati-Najafabadi, A., et al., Antibacterial and photocatalytic behaviour of green synthesis of Zn0. 95Ag0. 05O nanoparticles using herbal medicine extract, Ceramics International, (2021).

DOI: 10.1016/j.ceramint.2021.08.042

Google Scholar

[94] Cheraghi, A., et al., Effect of lemon juice on microstructure, phase changes, and magnetic performance of CoFe2O4 nanoparticles and their use on release of anti-cancer drugs, Ceramics International, (2021).

DOI: 10.1016/j.ceramint.2021.04.028

Google Scholar

[95] Najafabadi, A.H., A. Ghasemi, and R. Mozaffarinia, Synthesis and evaluation of microstructural and magnetic properties of Cr 3+ substitution barium hexaferrite nanoparticles (BaFe 10.5− x Al 1.5 Cr x O 19), Journal of Cluster Science, 27 (2016) 965-978.

DOI: 10.1007/s10876-015-0963-x

Google Scholar

[96] Lobinsky, A. and V. Tolstoy, Synthesis of 2D Zn–Co LDH nanosheets by a successive ionic layer deposition method as a material for electrodes of high-performance alkaline battery–supercapacitor hybrid devices, RSC advances, 8 (2018) 29607-29612.

DOI: 10.1039/c8ra00671g

Google Scholar

[97] Yang, Y., et al., Transformation mechanism of magnesium and aluminum precursor solution into crystallites of layered double hydroxide, Chemistry of Materials, 24 (2012) 81-87.

DOI: 10.1021/cm201936b

Google Scholar

[98] Prince, J., et al., Proposed General Sol− Gel Method to Prepare Multimetallic Layered Double Hydroxides: Synthesis, Characterization, and Envisaged Application, Chemistry of Materials, 21 (2009) 5826-5835.

DOI: 10.1021/cm902741c

Google Scholar

[99] Wang, Q. and D. O'Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets, Chemical reviews, 112 (2012) 4124-4155.

DOI: 10.1021/cr200434v

Google Scholar

[100] Hewlett, P. and M. Liska, Lea's chemistry of cement and concrete, (2019).

Google Scholar

[101] Arruda, C., et al., Hydrotalcite (Mg6Al2 (OH) 16 (CO3)· 4H2O): a potentially useful raw material for refractories, Interceram, 62 (2013) 187-191.

Google Scholar

[102] Zhao, Y., et al., Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps, Chemistry of Materials, 14 (2002) 4286-4291.

DOI: 10.1021/cm020370h

Google Scholar

[103] Abelló, S. and J. Pérez‐Ramírez, Tuning Nanomaterials' Characteristics by a Miniaturized In‐Line Dispersion–Precipitation Method: Application to Hydrotalcite Synthesis, Advanced Materials, 18 (2006) 2436-2439.

DOI: 10.1002/adma.200600673

Google Scholar

[104] Samanta, A., et al., Synthesis of nano calcium hydroxide in aqueous medium, Journal of the American Ceramic Society, 99 (2016) 787-795.

Google Scholar

[105] Liu, T., et al., Synthesis and characterization of calcium hydroxide nanoparticles by hydrogen plasma-metal reaction method, Materials Letters, 64 (2010) 2575-2577.

DOI: 10.1016/j.matlet.2010.08.050

Google Scholar

[106] Khan, M.D., J.W. Ahn, and G. Nam, Environmental benign synthesis, characterization and mechanism studies of green calcium hydroxide nano-plates derived from waste oyster shells, Journal of environmental management, 223 (2018) 947-951.

DOI: 10.1016/j.jenvman.2018.07.011

Google Scholar

[107] Darroudi, M., et al., Biopolymer-assisted green synthesis and characterization of calcium hydroxide nanoparticles, Ceramics International, 42 (2016) 3816-3819.

DOI: 10.1016/j.ceramint.2015.11.045

Google Scholar

[108] Hadiko, G., et al., Synthesis of hollow calcium carbonate particles by the bubble templating method, Materials Letters, 59 (2005) 2519-2522.

DOI: 10.1016/j.matlet.2005.03.036

Google Scholar

[109] Zhou, G.-T., et al., Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies, New Journal of Chemistry, 28 (2004) 1027-1031.

DOI: 10.1039/b315198k

Google Scholar

[110] Chen, J. and L. Xiang, Controllable synthesis of calcium carbonate polymorphs at different temperatures, Powder Technology, 189 (2009) 64-69.

DOI: 10.1016/j.powtec.2008.06.004

Google Scholar

[111] Davies, P.J. and B. Bubela, The transformation of nesquehonite into hydromagnesite, Chemical Geology, 12 (1973) 289-300.

DOI: 10.1016/0009-2541(73)90006-5

Google Scholar

[112] Mera, H. and T. Takata, High‐performance fibers, Ullmann's Encyclopedia of Industrial Chemistry, (2000).

Google Scholar

[113] Li, Q., et al., Fabrication of light-emitting porous hydromagnesite with rosette-like architecture, Solid state communications, 125 (2003) 117-120.

DOI: 10.1016/s0038-1098(02)00710-x

Google Scholar

[114] Bhattacharjya, D., T. Selvamani, and I. Mukhopadhyay, Thermal decomposition of hydromagnesite: Effect of morphology on the kinetic parameters, Journal of thermal analysis and calorimetry, 107 (2012) 439-445.

DOI: 10.1007/s10973-011-1656-9

Google Scholar

[115] Cheng, W. and Z. Li, Controlled supersaturation precipitation of hydromagnesite for the MgCl2− Na2CO3 system at elevated temperatures: chemical modeling and experiment, Industrial & engineering chemistry research, 49 (2010) 1964-1974.

DOI: 10.1021/ie9015073

Google Scholar

[116] Mitsuhashi, K., et al., Synthesis of microtubes with a surface of house of cards, structure via needlelike particles and control of their pore size, Langmuir, 21 (2005) 3659-3663.

DOI: 10.1021/la047580o

Google Scholar

[117] Bhattacharya, I., et al., Thermal decomposition of precipitated fine aluminium trihydroxide, Scandinavian journal of metallurgy, 33 (2004) 211-219.

DOI: 10.1111/j.1600-0692.2004.00686.x

Google Scholar

[118] Cárdenas, M., et al., Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites–Effect of particle size and surface treatment of ATH filler, Polymer Degradation and Stability, 93 (2008) 2032-2037.

DOI: 10.1016/j.polymdegradstab.2008.02.015

Google Scholar

[119] Yu, L., et al., Organic–inorganic hybrid flame retardant: preparation, characterization and application in EVA, RSC Advances, 4 (2014) 17812-17821.

DOI: 10.1039/c4ra00700j

Google Scholar

[120] Zhang, J.Y., Preparation and flame retardancy of a novel flame‐retardant poly (ethylene‐co‐vinyl acetate)/aluminum hydroxide composites containing phosphorus, Polymer composites, 32 (2011) 1970-1978.

DOI: 10.1002/pc.21228

Google Scholar

[121] Wang, L., et al., A comparison of the fire retardancy of poly (methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite, Polymer Degradation and Stability, 95 (2010) 572-578.

DOI: 10.1016/j.polymdegradstab.2009.12.012

Google Scholar

[122] Bartholmai, M. and B. Schartel, Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system, Polymers for Advanced Technologies, 15 (2004) 355-364.

DOI: 10.1002/pat.483

Google Scholar

[123] Chattopadhyay, D.K. and D.C. Webster, Thermal stability and flame retardancy of polyurethanes, Progress in Polymer Science, 34 (2009) 1068-1133.

DOI: 10.1016/j.progpolymsci.2009.06.002

Google Scholar

[124] Casu, A., et al., Effect of glass fibres and fire retardant on the combustion behaviour of composites, glass fibres–poly (butylene terephthalate), Fire and materials, 22 (1998) 7-14.

DOI: 10.1002/(sici)1099-1018(199801/02)22:1<7::aid-fam623>3.0.co;2-3

Google Scholar

[125] Wicklein, B., et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide, Nature nanotechnology, 10 (2015) 277-283.

DOI: 10.1038/nnano.2014.248

Google Scholar

[126] Gu, J., et al., Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities, Composites Science and Technology, 139 (2017) 83-89.

DOI: 10.1016/j.compscitech.2016.12.015

Google Scholar

[127] Kuang, Z., et al., Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity, Small, 11 (2015) 1655-9.

DOI: 10.1002/smll.201402569

Google Scholar

[128] Pandit, P., et al., Advanced flame-retardant agents for protective textiles and clothing, Advances in Functional and Protective Textiles, (2020) 397-414.

DOI: 10.1016/b978-0-12-820257-9.00016-3

Google Scholar

[129] Choudhury, A.K.R., Flame Retardants for Textile Materials, (2020).

Google Scholar

[130] Bachtiar, E.V., et al., Thermal stability, fire performance, and mechanical properties of natural fibre fabric-reinforced polymer composites with different fire retardants, Polymers, 11 (2019) 699.

DOI: 10.3390/polym11040699

Google Scholar

[131] Salmeia, K.A., S. Gaan, and G. Malucelli, Recent advances for flame retardancy of textiles based on phosphorus chemistry, Polymers, 8 (2016) 319.

DOI: 10.3390/polym8090319

Google Scholar

[132] Bourbigot, S., et al., PA‐6 clay nanocomposite hybrid as char forming agent in intumescent formulations, Fire and Materials, 24 (2000) 201-208.

DOI: 10.1002/1099-1018(200007/08)24:4<201::aid-fam739>3.0.co;2-d

Google Scholar

[133] Liu, A., et al., Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions, Biomacromolecules, 12 (2011) 633-41.

DOI: 10.1021/bm101296z

Google Scholar

[134] Kiliaris, P. and C. Papaspyrides, Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy, Progress in Polymer Science, 35 (2010) 902-958.

DOI: 10.1016/j.progpolymsci.2010.03.001

Google Scholar

[135] Hu, X., X. Zhu, and Z. Sun, Efficient flame-retardant and smoke-suppression properties of MgAlCO3-LDHs on the intumescent fire retardant coating for steel structures, Progress in Organic Coatings, 135 (2019) 291-298.

DOI: 10.1016/j.porgcoat.2019.06.014

Google Scholar

[136] Weil, E.D. and S. Levchik, A review of current flame retardant systems for epoxy resins, Journal of fire sciences, 22 (2004) 25-40.

DOI: 10.1177/0734904104038107

Google Scholar

[137] Takano, N., et al., Prepreg, metal-clad laminate, and printed circuit board obtained from these, (2003).

Google Scholar

[138] Honda, N. and T. Sugiyama, Halogen-free flame-retardant epoxy resin composition, (1999).

Google Scholar

[139] Gaan, S., et al., Flame retardant functional textiles, Functional Textiles for Improved Performance, Protection and Health, (2011) 98-130.

DOI: 10.1533/9780857092878.98

Google Scholar

[140] Genovese, A. and R.A. Shanks, Fire performance of poly (dimethyl siloxane) composites evaluated by cone calorimetry, Composites Part A: applied science and manufacturing, 39 (2008) 398-405.

DOI: 10.1016/j.compositesa.2007.09.009

Google Scholar

[141] Diaz, V., Fire-retardant mattress, (2004).

Google Scholar

[142] Graetz, S., et al., Deterministic risk assessment of firefighting water additives to aquatic organisms, Ecotoxicology, (2020) 1-13.

DOI: 10.1007/s10646-020-02274-5

Google Scholar

[143] Adams, R. and D. Simmons, Ecological effects of fire fighting foams and retardants, Proceedings of the Australian bushfire conference, Albury, (1999).

DOI: 10.1080/00049158.1999.10674797

Google Scholar