A Numerical and Experimental Study into Thermal Behavior of Micro Friction Stir Welded Joints of Al 1050 and Copper Sheets

Article Preview

Abstract:

One of the most important factors influencing the quality of the weld created by the micro friction stir welding is the amount of heat generated during the welding operation. Due to the lack of proper mixing of materials at low temperatures, joints' quality decreases due to the formation of cold welds. Also, overheating takes the process out of solid-state welding, which prevents good joints. Finite element analysis of friction stir welding leads to a better understanding of the effect of different parameters on the process. With the results extracted from such analysis, some of the output can be predicted, such as heat distribution. In the present study, in order to perform finite element analysis of the micro friction stir welding of Al 1050 to pure copper, the coupled Eulerian-Lagrangian method in Abaqus software has been used. The results of finite element analysis showed that the heat distribution on the copper side is wider due to the higher heat transfer coefficient of copper than aluminum. The maximum temperature in the analysis was recorded in the weld line, which was 392°C. The heat generated during the welding process was measured at different points relative to the joint line, and appropriate matching was observed with a comparison of experiments and simulation results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-60

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. H. Sehhat, A. Mahdianikhotbesara, Powder spreading in laser-powder bed fusion process, Granul. Matter, 23 (4) (2021) 1-18 ,.

DOI: 10.1007/s10035-021-01162-x

Google Scholar

[2] M. H. Sehhat, B. Behdani, C. H. Hung, A. Mahdianikhotbesara, Development of an Empirical Model on Melt Pool Variation in Laser Foil Printing Additive Manufacturing Process Using Statistical Analysis, Metallogr. Microstruct. Anal., 10 (2021) 684-691,.

DOI: 10.1007/s13632-021-00795-x

Google Scholar

[3] M. H. Sehhat, A. Mahdianikhotbesara, F. Yadegari, Impact of Temperature and Material Variation on Mechanical Properties of Parts Fabricated with Fused Deposition Modelling (FDM) Additive Manufacturing, PREPRINT (Version 1) available at Research Square (2021),.

DOI: 10.21203/rs.3.rs-1079840/v1

Google Scholar

[4] M. H. Sehhat, A. T. Sutton, C. H. Hung, J. W. Newkirk, M. C. Leu, Investigation of Mechanical Properties of Parts Fabricated with Gas- and Water-Atomized 304L Stainless Steel Powder in the Laser Powder Bed Fusion Process, JOM, (2021) 1-10,.

DOI: 10.1007/s11837-021-05029-7

Google Scholar

[5] M. H. Sehhat, A. Mahdianikhotbesara, F. Yadegari, PREPRINT (Version 1) available at Research Square (2021),.

Google Scholar

[6] T. Turk, C. H. Hung, M. H. Sehhat, M. C. Leu, Methods of Automating the Laser-Foil-Printing Additive Manufacturing Process, Proceedings of the 32nd Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, (2021).

DOI: 10.32656/2018_29sff_symposium

Google Scholar

[7] T. Liu, C. S. Lough, M. H. Sehhat, J. Huang, E. C. Kinzel, M. C. Leu, In-Situ Thermographic Inspection for Laser Powder Bed Fusion, Proceedings of the 32nd Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, (2021).

DOI: 10.1016/j.addma.2022.102873

Google Scholar

[8] M. H. Sehhat, J. Chandler, Z. Yates, A review on ICP powder plasma spheroidization process parameters, Int. J. Refract. Met. Hard. Mater. (2021) 1-26.

DOI: 10.1016/j.ijrmhm.2021.105764

Google Scholar

[9] M. H. Sehhat, A. Mahdianikhotbesara, M. Hadad, Formability Investigation for Perforated Steel Sheets, SAE MobilityRxiv Preprint, (2021),.

DOI: 10.47953/sae-pp-00182

Google Scholar

[10] R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R reports, 50 (1) (2005) 1–78.

Google Scholar

[11] Y. J. Chao, X. Qi, Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6, JMPMS, 7 (2) (1998) 215–233.

DOI: 10.1106/ltkr-jfbm-rgmv-wvcf

Google Scholar

[12] H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding, Model. Simul. Mater. Sci. Eng., 12 (1) (2003).

DOI: 10.1088/0965-0393/12/1/013

Google Scholar

[13] M. Chiumenti, M. Cervera, C. A. de Saracibar, N. Dialami, Numerical modeling of friction stir welding processes, Comput. Methods Appl. Mech. Eng., 254 (2013) 353–369.

DOI: 10.1016/j.cma.2012.09.013

Google Scholar

[14] N. Najafizadeh, M. Rajabi, R. Hashemi, S. Amini, A method and apparatus for determination of the ultrasonic-assisted forming limit diagram, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., (2021),.

DOI: 10.1177/09544062211011509

Google Scholar

[15] N. Najafizadeh, M. Rajabi, R. Hashemi, S. Amini, "Improved microstructure and mechanical properties of sheet metals in ultrasonic vibration enhanced biaxial stretch forming, J. Theor. Appl. Vib. Acoust., 5 (1) (2019) 1–10,.

Google Scholar

[16] M. Assidi, L. Fourment, S. Guerdoux, T. Nelson, Friction model for friction stir welding process simulation: Calibrations from welding experiments, Int. J. Mach. Tools Manuf., 50 (2) (2010) 143–155.

DOI: 10.1016/j.ijmachtools.2009.11.008

Google Scholar

[17] Z. Zhang, W. U. Qi, H. Zhang, Numerical studies of effect of tool sizes and pin shapes on friction stir welding of AA2024-T3 alloy, Trans. Nonferrous Met. Soc. China, 24 (10) (2014) 3293–3301.

DOI: 10.1016/s1003-6326(14)63469-5

Google Scholar

[18] G. Buffa, A. Ducato, L. Fratini, Numerical procedure for residual stresses prediction in friction stir welding, Finite Elem. Anal. Des., 47 (4) (2011) 470–476.

DOI: 10.1016/j.finel.2010.12.018

Google Scholar

[19] F. Al-Badour, N. Merah, A. Shuaib, A. Bazoune, Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes, J. Mater. Process. Technol., 213 (8) (2013) 1433–1439.

DOI: 10.1016/j.jmatprotec.2013.02.014

Google Scholar

[20] G. K. White, S. J. Collocott, Heat capacity of reference materials: Cu and W, J. Phys. Chem. Ref. data, 13 (4) (1984).

Google Scholar

[21] D. R. Lide, CRC handbook of chemistry and physics, CRC press, (2004).

Google Scholar

[22] L. F. Mondolfo, Aluminum alloys: structure and properties, Elsevier, (2013).

Google Scholar

[23] A. Rajak, S. Kore, Electromagnetic hemming of aluminum sheets using FEM, ICMMD-2016 Adv. Intell. Syst. Res., (2017) 77–82.

DOI: 10.2991/iccasp-16.2017.13

Google Scholar

[24] B. T. Long, N. Cuong, N. H. Phan, H. A. Toan, P. Janmanee, Enhanced Material Removal Rate and Surface Quality of H13 Steel in Electrical Discharge Machining With Graphite Electrode in Rough Machining, Int. J. Sci. Eng. Technol., 4, (2) (2015) 101–106.

DOI: 10.17950/ijset/v4s2/216

Google Scholar

[25] G. E. Totten, D. S. MacKenzie, Handbook of aluminum: physical metallurgy and processes, CRC press, (2003).

Google Scholar

[26] A. Boșneag, M. A. Constantin, E. L. Nitu, Numerical simulation of Friction Stir Welding of three dissimilar aluminium alloys, in IOP Conference Series: Materials Science and Engineering, 564 (1) (2019).

DOI: 10.1088/1757-899x/564/1/012033

Google Scholar

[27] C. H. Hung, W. T. Chen, M. H. Sehhat, M. C. Leu, The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing, Int. J. Adv. Manuf. Technol., 112 (3) (2021) 867–877,.

DOI: 10.1007/s00170-020-06402-7

Google Scholar

[28] C. H. Hung, T. Turk, M. H. Sehhat, M. C. Leu, Development and experimental study of an automated laser-foil-printing additive manufacturing system, Rapid Prototyping J. (2021) 1–11,.

DOI: 10.1108/rpj-10-2021-0269

Google Scholar

[29] A. Mahdianikhotbesara, M. H. Sehhat, M. Hadad, Experimental Study on Micro-Friction Stir Welding of Dissimilar Butt Joints Between Al 1050 and Pure Copper, Metallogr. Microstruct. Anal., 10 (2021) 458-473,.

DOI: 10.1007/s13632-021-00771-5

Google Scholar

[30] A. P. Jirandehi, M. M. Khonsari, General quantification of fatigue damage with provision for microstructure: A review, Fatigue Fract. Eng. Mater. Struct., (2021).

DOI: 10.1111/ffe.13515

Google Scholar

[31] A. P. Jirandehi, M. M. Khonsari, On the determination of cyclic plastic strain energy with the provision for microplasticity, Int. J. Fatigue, 142 (2021).

DOI: 10.1016/j.ijfatigue.2020.105966

Google Scholar