Design and Numerical Simulation of Color Tunable Laterally Arranged Quantum well Light Emitting Diode with Double Anode Single Cathode

Article Preview

Abstract:

In this paper, a color-tunable light emitting diode LED with two laterally arranged single quantum wells (SQWs) is designed, and simulated. In this work, III-nitride materials are used. The structure has been numerically investigated using the ATLAS simulation software. The proposed structure has three electrodes. This gives the opportunity to emit violet (420 nm) or green (560 nm) light individually. Furthermore, it can emit simultaneously a mixture of both colors, and at a certain mixture ratio the white light is obtained with chromaticity coordinates ( x = 0.3113, y = 0.3973). The lateral arrangement of the two SQWs reduces the negative effect of photon absorption; which will give good external quantum efficiency (EQE). The structure has a big importance in the application of the solid-state lighting, especially in the white light generation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-24

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Nakamura, M. Seno, & T. Mukai. P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes, Japanese Journal of Applied Physics. 32 (1A) (1993) L8.

DOI: 10.1143/jjap.32.l8

Google Scholar

[2] M. Yamada, Y. Narukawa and T. Mukai. Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well, Jpn. J. Appl. Phys. 41 (2002) 246– 248.

DOI: 10.1143/jjap.41.l246

Google Scholar

[3] N. Poyiatzis, M. Athanasiou, J. Bai, Y. Gong, & T. Wang. Monolithically integrated white light LEDs on (11–22) semi-polar GaN templates, Scientific reports. 9 (1) (2019) 1-7.

DOI: 10.1038/s41598-018-37008-5

Google Scholar

[4] Y. Li, L. Chang, H. Chen, et al. Phosphor-free InGaN white light emitting diodes using flip-chip technology, Materials. 10 (4) (2017) 432.

DOI: 10.3390/ma10040432

Google Scholar

[5] H. Li, P. Li, H. Zhang, et al. Electrically driven, polarized, phosphor-free white semipolar (20-21) InGaN light-emitting diodes grown on semipolar bulk GaN substrate, Optics express. 28 (9) (2020) 13569-13575.

DOI: 10.1364/oe.384139

Google Scholar

[6] J. Chang, Y. Kuo and M. Tsai. Correlation of barrier material and quantum-well number for InGaN/(In)GaN blue light-emitting diodes, physica status solidi (a). 208 (3) (2011) 729-734.

DOI: 10.1002/pssa.201026369

Google Scholar

[7] C. Kolper, M. Sabathil, M. Mandl, M. Strassburg and B. Witzigmann. All-InGaN Phosphorless White Light Emitting Diodes: An Efficiency Estimation, Journal of Lightwave Technology. 30 (17) (2012) 2853-2862.

DOI: 10.1109/jlt.2012.2206561

Google Scholar

[8] S. Singh, N. Rohila, S. Pal and C. Dhanavantri. Optimization towards reduction of efficiency droop in blue GaN/InGaN based light emitting diodes, Optik. 123 (14) (2012) 1287-1292.

DOI: 10.1016/j.ijleo.2011.07.061

Google Scholar

[9] D. Kong, C. Kang, J. Lee, J. Kim and D. Lee. Color tunable monolithic InGaN/GaN LED having a multi-junction structure, Optics Express. 24 (6) (2016) A667-A673.

DOI: 10.1364/oe.24.00a667

Google Scholar

[10] Y. Lee, P. Lin, T. Lu, H. Kuo and S. Wang. Dichromatic InGaN-based white light emitting diodes by using laser lift-off and wafer-bonding schemes, Applied Physics Letters. 90 (16) (2007) 161115.

DOI: 10.1063/1.2722672

Google Scholar

[11] I. Ozden, E. Makarona, A. Nurmikko, T. Takeuchi and M. Krames. A dual-wavelength indium gallium nitride quantum well light emitting diode, Applied Physics Letters.79 (16) (2001) 2532-2534.

DOI: 10.1063/1.1410345

Google Scholar

[12] H. Jian-Jang; K. Hao-Chung; S. Shyh-Chiang. Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications. Woodhead Publishing, (2017).

DOI: 10.1016/b978-0-85709-507-7.50024-0

Google Scholar

[13] S .Yamamoto, Y. Zhao, C. Pan, et al. High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (2021) GaN Substrates, Applied Physics Express. 3 (12) (2010) 122102.

DOI: 10.1143/apex.3.122102

Google Scholar

[14] H. Sato, A. Tyagi, H. Zhong et al. High power and high efficiency green light emitting diode on free-standing semipolar (11(2)over-bar2) bulk GaN substrate, Phys Status Solidi (RRL)–Rapid Research Letters. 1 (4) (2007) 162–164.

DOI: 10.1002/pssr.200701098

Google Scholar

[15] M. Funato, M. Ueda, Y. Kswakam et al. Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates, Japanese Journal of Applied Physics. 45 (7L) (2006) L659.

DOI: 10.1143/jjap.45.l659

Google Scholar

[16] A. Tyagi, H. ZHong et al. High brightness violet InGaN/GaN light emitting diodes on semipolar (1011) bulk GaN substrates, Japanese Journal of Applied Physics. 46 (2L) (2007) L129.

DOI: 10.1143/jjap.46.l129

Google Scholar

[17] I. Park, J. Kim, M. Kwon, C. Cho, J. Lim and S. Park. Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells, Applied Physics Letters. 92(9) (2008) 091110.

DOI: 10.1063/1.2890492

Google Scholar

[18] LI, Simon; LI, Suihua. 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics. Springer Science & Business Media, (2011).

Google Scholar

[19] ATLAS Manual. 2013, Silvaco Software Inc.

Google Scholar

[20] F. Bernardini, V. Fiorentini, and D.Vanderbilt. Spontaneous polarization and piezoelectric constants of III-V nitrides, Physical Review B. 56 (16) (1997) R10024.

DOI: 10.1103/physrevb.56.r10024

Google Scholar

[21] J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, UCSB: Academic Press (2003): 22.

Google Scholar

[22] E.F. Schubert, T. Gessmann, et J. K. Kim. Inorganic semiconductors for light-emitting diodes. Organic Light Emitting Devices, (2006) 1-33.

DOI: 10.1002/3527607986.ch1

Google Scholar

[23] V.Avrutin, F. Zhang, S.A. Hafiz, H. Morkoc, et al. Saga of efficiency degradation at high injection in InGaN light emitting diodes, Turkish J. Phys. 38 (3) (2014) 269-313.

DOI: 10.3906/fiz-1407-23

Google Scholar

[24] J. Schanda, ed. Colorimetry: understanding the CIE system, John Wiley & Sons. (2007).

Google Scholar

[25] R. J. Mortimer, & T. S. Varley. Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to in situ colorimetry studies of electrochromic materials, Displays. 32 (1) (2011) 35-44.

DOI: 10.1016/j.displa.2010.10.001

Google Scholar

[26] E.F. Schubert. Light-Emitting Diodes, 2nd ed. New York: Cambridge University Press, (2006).

Google Scholar

[27] Information on https://www.ies.org/definitions/table-t-5a-color-matching-functions-and-chromaticity-coordinates-of-cie-1931-standard-colorimetric-observer/.

Google Scholar

[28] Y. Sayad and A.K. Nouiri. Electroluminescence properties of InGaN/GaN multiple quantum well light emitting diodes, International Journal of Nanoparticles 11. 6 (2-3) (2013) 201-207.

DOI: 10.1504/ijnp.2013.054995

Google Scholar

[29] J. Piprek. Efficiency droop in nitride-based light-emitting diodes, Phys. Status Solidi (a). 207 (10) (2010) 2217–2225.

DOI: 10.1002/pssa.201026149

Google Scholar

[30] Y. C. Shen, G.O. Mueller, S. Watanabe, et al. Auger recombination in InGaN measured by photoluminescence, Applied Physics Letters. 91 (14) (2007) 141101-141103.

DOI: 10.1063/1.2785135

Google Scholar

[31] G. Muziol, H. Turski, M. Siekacz, et al. Beyond quantum efficiency limitations originating from the piezoelectric polarization in light-emitting devices, ACS Photonics. 6 (8) (2019) 1963-1971.

DOI: 10.1021/acsphotonics.9b00327

Google Scholar

[32] S. Zhang, J. Zhang, J. Gao, et al. Efficient emission of InGaN-based light-emitting diodes: toward orange and red, Photonics Research. 8 (11) (2020) 1671-1675.

DOI: 10.1364/prj.402555

Google Scholar