Surface Defect Classification in Silicon Wafer Manufacturing Using the Linear-Based Channeling and Rule-Based Binning Algorithms

Article Preview

Abstract:

Developing an accurate means of classifying defects, such as crystal-originated pits, surface-adhered foreign particles, and process-induced defects, using scanning surface inspection systems (SSIS) is of paramount importance because it provides the opportunity to determine the root causes of defects, which is valuable for yield enhancement. This report presents a novel defect classification approach developed by optimizing the linear-based channeling (LBC) and rule-based binning (RBB) algorithms that are applied to a commercially available SSIS (KLA-SP5), in combination with test sample selection including the signature defect patterns associated with the typical crystal growth process. The experimental results demonstrate that defect classification is possible with an accuracy and purity above 80% using the LBC algorithm and 90% using the RBB algorithm.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] R.F. Reinhardt, K.A., Reidy, Handbook of Cleaning for Semiconductor Manufacturing, John Wiley and Sons, New Jersey, (2011).

Google Scholar

[2] V. Lindroos, M. Tilli, A. Lehto, T. Motooka, Handbook of Silicon Based MEMS Materials and Technologies (Micro and Nano Technologies), William Andrew, (2010).

Google Scholar

[3] J. Park, K. Kwack, Crystal Originated Particle Induced Oxide Breakdown in Czochralski Silicon Wafer, J. Korean Phys. Soc. 38 (2001) 356–365.

Google Scholar

[4] M. Hourai, E. Asayama, H. Nishikawa, M. Nishimoto, T. Ono, M. Okui, Recognition and Imaging of Point Defect Diffusion, Recombination, and Reaction During Growth of Czochralski-Silicon Crystals, J. Electron. Mater. 49 (2020) 5110–5119. https://doi.org/10.1007/s11664-020-08203-w.

DOI: 10.1007/s11664-020-08203-w

Google Scholar

[5] G. Kissinger, J. Dabrowski, T. Sinno, Y. Yang, D. Kot, A. Sattler, Ab initio calculations and rate equation simulations for vacancy and vacancy-oxygen clustering in silicon, J. Cryst. Growth. 468 (2017) 424–432. https://doi.org/10.1016/j.jcrysgro.2016.10.073.

DOI: 10.1016/j.jcrysgro.2016.10.073

Google Scholar

[6] B. Jean-Luc, D. Bruno, Contamination Monitoring and Analysis in Semiconductor Manufacturing, in: Semicond. Technol., Semiconductor Technologies, 2010: p.57–78. https://doi.org/10.5772/8561.

DOI: 10.5772/8561

Google Scholar

[7] A. Nutsch, B. Beckhof, G. Bedana, G. Borionetti, D. Codegoni, S. Grasso, G. Guerinoni, A. Leibold, M. Müller, M. Otto, L. Pfitzner, M.L. Polignano, D. De Simone, L. Frey, Characterization of organic contamination in semiconductor manufacturing processes, AIP Conf. Proc. 1173 (2009) 23–28. https://doi.org/10.1063/1.3251227.

DOI: 10.1063/1.3251227

Google Scholar

[8] K. Reinhardt, W. Kern, Handbook of Silicon Wafer Cleaning Technology, William Andrew, (2018).

Google Scholar

[9] H. Ohta, S.M. Byeong, G.P. Jea, H.L. Sang, H.A. Jeong, H. Kwon, T. Watanabe, K. Ichinose, K. Nemoto, K.P. Sung, Quantifying yield impact of polishing induced defect on the silicon surface, ASMC (Advanced Semicond. Manuf. Conf. Proc. (2009) 41–45. https://doi.org/10.1109/ASMC.2009.5155950.

DOI: 10.1109/asmc.2009.5155950

Google Scholar

[10] R. Vos, K. Xu, M. Lux, W. Fyen, R. Singh, Z. Chen, P. Mertens, Z. Hatcher, M. Heyns, Use of surfactants for improved particle performance of dHF-based cleaning recipes, Solid State Phenom. 76–77 (2001) 263–266. https://doi.org/10.4028/www.scientific.net/SSP.76-77.263.

DOI: 10.4028/www.scientific.net/ssp.76-77.263

Google Scholar

[11] Y.Y. Lin, F.S. Tsai, L.C. Hsu, H.K. Hsu, C.Y. Li, Y.Y. Ke, C.W. Huang, J.M. Chen, S.J. Chang, T.Y. Lee, E. Chen, C.Y. Cheng, Fast and accurate defect classification for CMP process monitoring, ASMC (Advanced Semicond. Manuf. Conf. Proc. 2019-May (2019) 224–228. https://doi.org/10.1109/ASMC.2019.8791750.

DOI: 10.1109/asmc.2019.8791750

Google Scholar

[12] P. Wagner, Metrology of 300 mm silicon wafers: Challenges and results, 1998 Int. Conf. Charact. Metrol. ULSI Technol. 153 (1998) 153–160. https://doi.org/10.1063/1.56790.

DOI: 10.1063/1.56790

Google Scholar

[13] A. Zandiatashbar, B. Kim, Y. Yoo, K. Lee, A. Jo, J.S. Lee, S.-J. Cho, S. Park, High-throughput automatic defect review for 300mm blank wafers with atomic force microscope, 9424 (2015) 94241X. https://doi.org/10.1117/12.2086042.

DOI: 10.1117/12.2086042

Google Scholar

[14] M. Akbulut, H. Lihn, M. Vaez-irvani, S. Stok, G. Zhao, W. Inspection, COPs / Particles Discrimination With a Surface Scanning Inspection System, Semicond. Int. (1999) 1–8.

Google Scholar

[15] B. Pinto, J. Saito, W. Shen, L. Cheung, A.W.K. Corporation, New Inspection Technology for 45nm Wafers, Yield Manag. Solut. (2007) 28–32.

Google Scholar

[16] F. Passek, R. Schmolke, H. Piontek, A. Luger, P. Wagner, Discrimination of particles and defects on silicon wafers, Microelectron. Eng. 45 (1999) 191–196. https://doi.org/10.1016/S0167-9317(99)00145-8.

DOI: 10.1016/s0167-9317(99)00145-8

Google Scholar

[17] Y. Liu, T. Wei, M. Li, Z. Li, Z. Xue, X. Wei, Characterization of grown-in defects in Si wafers by gas decoration, Mater. Sci. Semicond. Process. 130 (2021) 105822. https://doi.org/10.1016/j.mssp.2021.105822.

DOI: 10.1016/j.mssp.2021.105822

Google Scholar

[18] K. Xu, R. Vos, G. Vereecke, M. Lux, W. Fyen, F. Holsteyns, K. Kenis, P.W. Mertens, M.M. Heyns, C. Vinckier, Relation between particle density and haze on a wafer: A new approach to measuring nano-sized particles, Solid State Phenom. 92 (2003) 161–164. https://doi.org/10.4028/www.scientific.net/ssp.92.161.

DOI: 10.4028/www.scientific.net/ssp.92.161

Google Scholar

[19] C.R. Brundle, Full wafer particle defect characterization, in: AIP Conf. Proc., AIP, 2001: p.285–291. https://doi.org/10.1063/1.1354412.

DOI: 10.1063/1.1354412

Google Scholar

[20] P. Huang, Defect mapping accuracy of KLA-Tencor Surfscan 6200, 6400, and SP1, in: AIP Conf. Proc., AIP, 2001: p.317–321. https://doi.org/10.1063/1.1354418.

DOI: 10.1063/1.1354418

Google Scholar

[21] SEMI, SEMI M52-0214 Guide For Specifying Scanning Surface Inspection Systems For Silicon Wafers For The 130 nm To 11 nm, (2014).

Google Scholar

[22] C. Kupfer, H. Roth, H. Dietrich, Defect requirements for advanced 300 mm DRAM substrates, Mater. Sci. Semicond. Process. 5 (2002) 381–386. https://doi.org/10.1016/S1369-8001(02)00137-3.

DOI: 10.1016/s1369-8001(02)00137-3

Google Scholar

[23] R.. Brown, F. Dupret, E. Dornberger, T. Sinno, W. von Ammon, Defect engineering of Czochralski single-crystal silicon, Mater. Sci. Eng. R Reports. 28 (2002) 149–198. https://doi.org/10.1016/s0927-796x(00)00015-2.

DOI: 10.1016/s0927-796x(00)00015-2

Google Scholar

[24] Z. Zheng, T. Seto, S. Kim, M. Kano, T. Fujiwara, M. Mizuta, S. Hasebe, A first-principle model of 300 mm Czochralski single-crystal Si production process for predicting crystal radius and crystal growth rate, J. Cryst. Growth. 492 (2018) 105–113. https://doi.org/10.1016/j.jcrysgro.2018.03.013.

DOI: 10.1016/j.jcrysgro.2018.03.013

Google Scholar

[25] A. Zandiatashbar, P.A. Taylor, B. Kim, Y. Yoo, K. Lee, A. Jo, J.S. Lee, S.-J. Cho, S. Park, Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM, (2016) 97782P. https://doi.org/10.1117/12.2220369.

DOI: 10.1117/12.2220369

Google Scholar

[26] K.M. Saga, US10718720B2-Semiconductor wafer evaluation method and semiconductor wafer-2020.pdf, US010718720B2, (2020).

Google Scholar

[27] J. Vanhellemont, S. Senkader, G. Kissinger, V. Higgs, M. T, Measurement , modelling and simulation of defects in as-grown Czochralski silicon, 180 (1997) 353–362.

DOI: 10.1016/s0022-0248(97)00233-9

Google Scholar

[28] S.H. Lee, D.W. Song, H.J. Oh, D.H. Kim, Modeling of defects generation in 300mm silicon monocrystals during czochralski growth, Jpn. J. Appl. Phys. 49 (2010). https://doi.org/10.1143/JJAP.49.121303.

DOI: 10.1143/jjap.49.121303

Google Scholar

[29] M.S. Kulkarni, A selective review of the quantification of defect dynamics in growing Czochralski silicon crystals, Ind. Eng. Chem. Res. 44 (2005) 6246–6263. https://doi.org/10.1021/ie0500422.

DOI: 10.1021/ie0500422

Google Scholar