Chemical Composition and Morphological Characterization of Enset (E. ventricosum) Leaf Residues for Paper Pulping Production: Kraft Pulping

Article Preview

Abstract:

Currently, paper pulping production from woody materials has many disadvantages due to its high energy, chemical, water consumption, methane emissions, and deforestation. However, the use of non-woody materials solves these problems. This study focused on the use of non-virgin raw material (Enset leaf fiber) in pulp and paper making. Enset leaf residues are the primary solid residues after the steam plant is used for “Kocho” processing. This leaf fiber has a lignocellulose component, converting this residue into Pulp and paper is crucial in terms of economic and waste management via the Kraft process. It has a higher fiber quality, lower energy consumption, and high recoverability of the chemical raw materials used in the process. The chemical composition of the Enset leaf fiber was analyzed using the Technical Association of Pulp and Paper. It has an excellent fiber length (2.12±1.46mm), fiber diameter (26.55±15.6µm) and acceptable rigidity coefficient (1.05±0.07), and flexibility coefficient (125.23±0.04). The maximum pulp yield was obtained at a temperature of 120°C, NaOH concentration of 8%, and 40 min cooking time off, which was 69.92% w/w. The functional groups of the Enset leaf fiber and morphological characteristics of the fiber were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-140

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pye, O. Com-modifying sustainability: Development, nature and politics in the palm oil industry. World development,121(2019)218-228.

DOI: 10.1016/j.worlddev.2018.02.014

Google Scholar

[2] Feria, M.J., García, J.C., Pérez, A., Gomide, J.L., Colodette, J.L., López, F. Process optimization in kraft pulping, bleaching, and beating of Leucaena divers' folia, (2012).

Google Scholar

[3] Borukanlu, M.R., Zadeh, O.H., Moradpour, P. et al. Effects of growth rate of eastern poplar trees on the chemical and morphological characteristics of wood fibers. Eur. J. Wood Prod,79 (2021)1479–1494. https://doi.org/10.1007/s00107-021-01711-4.

DOI: 10.1007/s00107-021-01711-4

Google Scholar

[4] Hassan, S. S., Williams, G. A., Jaiswal, A. K. Moving towards the second generation of lignocellulosic biorefifineries in the EU:drivers, challenges, and opportunities. Renew. Sust. Energ. Rev. 101(2019)590–599.

DOI: 10.1016/j.rser.2018.11.041

Google Scholar

[5] K. Taiwo, O. D. Fagbemigun, O. O. Fagbemigun, E. Mgbachiuzor and C. C. Igwe. Pulp and paper-making potential of corn husk. International Journal of AgriScience, 4(4)(2014)209-213.

DOI: 10.9734/bjast/2014/10745

Google Scholar

[6] Angzzas Sari Mohd Kassim, Ashuvila Mohd Aripin, Nadiah Ishak, Muhd Hafeez Zainulabidin. Cogon Grass As an Alternative Fibre for Pulp and Paper-Based Industry: On Chemical and Surface Morphological Properties.Applied Mechanics and Materials,773-774(2015)1242-1245.

DOI: 10.4028/www.scientific.net/amm.773-774.1242

Google Scholar

[7] Fokion Kaldis, Denise Cysneiros, James Day, Kimon-Andreas G. Karatzas, Afroditi Chatzifragkou. Anaerobic Digestion of Steam-Exploded Wheat Straw and Co-Digestion Strategies for Enhanced Biogas Production. Applied science,10(2020)8284.

DOI: 10.3390/app10228284

Google Scholar

[8] Liu, Jing, and Katsuya Nagata. Target Kappa Number for AS/AQ Pulping of Wheat Straw., Advanced Materials Research, 236–238(2011),Trans Tech Publications, Ltd.1431–1436. Crossref,.

DOI: 10.4028/www.scientific.net/amr.236-238.1431

Google Scholar

[9] Yan, H., Zhou, H., Luo, H. et al. Characterization of full-length transcriptome in Saccharum officinarum and molecular insights into tiller development. BMC Plant Biol, 21(228) (2021). https://doi.org/10.1186/s12870-021-02989-5.

DOI: 10.1186/s12870-021-02989-5

Google Scholar

[10] Yu-Cai He, Cui-Luan Ma, and Bin Yang. Pretreatment Process and Its Synergistic Effects on Enzymatic Digestion of Lignocellulosic Material. Springier Nature, (2018)978-981.

DOI: 10.1007/978-981-13-0749-2_1

Google Scholar

[11] Jinyu Tan, Yan Li, Xiang Tan, Honggou Wu, Hu Li, Song Yang. Advances in pretreatment of straw biomass for sugar production. Frontiers in chemistry, 9(2021)696030.

DOI: 10.3389/fchem.2021.696030

Google Scholar

[12] Sahin HT. Base-catalyzed organosolv pulping of jute. J Chem Technol Biotechnol, 78(2003)1267–73.

DOI: 10.1002/jctb.931

Google Scholar

[13] Ho, Chen-Lung; Wu, Keng-Tung; Wang, Eugene I-Chen; Su, Y.-C. Kinetic study of carbohydrate dissolution during tetra-hydro-furfuryl alcohol/HCL pulping of rice straw. BioResources, 7(2012)5719–5736.

DOI: 10.15376/biores.7.4.5719-5736

Google Scholar

[14] Shuangshuang Zhao, Zhongjian Tian, Gaojin Lyu, Dongxing Wang, Hairui Ji, Rumiing Wang, Xingiang Ji, Lucian A.Lucia. Pulp properties and spent pretreatment solution resulting from reed pulping with a low Alkali loading. Bio-resources,16(2)(2021)2303-2313.

DOI: 10.15376/biores.16.2.2303-2313

Google Scholar

[15] Chaurasia, S., Singh, S., Naithani, S., Srivastava, P., A. Comprehensive Study on Proximate Chemical Composition of Melocanna baccifera (Muli Bamboo) and it"s Suitability for Pulp and Paper Production. Res, 5(2016)3–6.

DOI: 10.4172/2168-9776.1000168

Google Scholar

[16] Ramadevi, P., Sampathkumar, D., Srinivasa, C.V., Bennehalli, B. Effect of alkali treatment on water absorption of single cellulosic abaca fiber. BioResources,7 (2012)3515–3524.

Google Scholar

[17] Asmanto Subagyo, Achmad Chafidz. Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications.IntechOpen,10(2018).

DOI: 10.5772/intechopen.82204

Google Scholar

[18] Reddy Marella, J.B., Madireddy, S., Maripi, A.N. Production of Pulp from Banana Pseudo stem for Grease Proof Paper. Int. J. Eng. Res. Gen. Sci, 2(2014)61–77.

Google Scholar

[19] Aremu, M. O., Rafiu M. A., and Adedeji, K. K. Pulp and Paper Production from Nigerian Pineapple Leaves and Corn Straw as Substitute to Wood Source. International Research Journal of Engineering, and Technology (IRJET),02(04) (2015) 2395-0072.

Google Scholar

[20] Nurfeta, A., Eik, L.O., Adugna Tolera, Sundstøl, F. Chemical composition and in Sacco dry matter degradability of different morphological fractions of ten Enset (Ensete ventricosum) varieties. Anim. Feed Sci. Technol, 146(2008a.) 55–73.

DOI: 10.1016/j.anifeedsci.2007.12.003

Google Scholar

[21] Forsido, S.F., Rupasinghe, H.P.V., Astatkie, T. Antioxidant capacity, total phenolics, and nutritional content in selected Ethiopian staple food ingredients. Int. J. Food Sci. Nutr, 64(2013) 915–920.

DOI: 10.3109/09637486.2013.806448

Google Scholar

[22] Mohammed, B., Martin, G., Laila, M.K. Nutritive values of the drought-tolerant food and fodder crop Enset. African J. Agric. Res, 8(2013) 2326–2333.

DOI: 10.5897/ajar12.1296

Google Scholar

[23] Ayele, A., Sahu, O. Extension of Enset Plant Product for Rural Development in Ethiopia. J. Agric. Econ. Ext. Rural Dev, 2(2014) 31–40.

Google Scholar

[24] A.N. Afiqah, S.M. Sapuan, R.A. Ilyas.Pulp and Paper Production: A Review. Seminar on Advanced Bio- and Mineral based Natural Fibre Composites.(2021)978-983.

Google Scholar

[25] Abd El-Sayed, Essam S., El-Sakhawy, Mohamed, El-Sakhawy, Mohamed Abdel-Monem. Non-wood fibers as raw material for pulp and paper industry, Nordic Pulp and Paper Research Journal, 35(2)(2020)215-230. https://doi.org/10.1515/npprj-2019-0064.

DOI: 10.1515/npprj-2019-0064

Google Scholar

[26] Chan-Woo Park, Song-Yi Han, Seon-Kang Choi, Seung-Hwan Lee.Preparation and Properties of Holocellulose Nanofibrils with Different Hemicellulose Content. bioresources,12(3)(2017) 6298-6308.

DOI: 10.15376/biores.12.3.6298-6308

Google Scholar

[27] Sim YY, Nyam KL. Hibiscus cannabinus L. (kenaf) studies: Nutritional composition, phytochemistry, pharmacology, and potential applications. Food Chem,44 (2021)128582.

DOI: 10.1016/j.foodchem.2020.128582

Google Scholar

[28] Andrade, M.F., and J.L. Colodette. Dissolving pulp production from sugar cane bagasse. Industrial Crops and Products, 52 (2014)58–64.

DOI: 10.1016/j.indcrop.2013.09.041

Google Scholar

[29] Mahesh, S., Kumar, P., and Ansari, S.A. A rapid and economical method for the maceration of wood fibers in Boswellia serrata Roxb. Tropical Plant Research, 2(2)(2015)108-111.

Google Scholar

[30] Ishiguro, F., Also, H., Hirano, M., Yahya, R., Wahyudi, I., Ohshima, J., Iizuka, K., and Yokota, S. Effects of radial growth rate on anatomical characteristics and wood properties of 10-year-old Dysoxylum mollissimum trees planted in Bengkulu, Indonesia. Tropics, 25(1)(2016)23-31.

DOI: 10.3759/tropics.25.23

Google Scholar

[31] Rismawaty Sikanna, Dwi Nur Assyifah Rajmah, Kurnia Ramadani, Musafira, Arfiani Nur, Amalyah Febryanti.Synthesis and Characterization of Bagasse Silica Gel Modified Diphenyl carbazone. Journal of Islamic Science and Technology,7(2021)22373-9239.

DOI: 10.22373/ekw.v7i1.9239

Google Scholar

[32] Cao, S., L. Lin, F. Huang, L. Huang, and L. Chen. Morphological and chemical characterization of green bamboo (Dendrocalamopsis Oldham (Munro) Keng f.) for dissolving pulp production. BioResources, 9(2014) 4528–4539.

DOI: 10.15376/biores.9.3.4528-4539

Google Scholar

[33] Junaida Shezmin Zavahir, Jamieson S. P. Smith, Scott Blunde, Habtewold D. Waktola, Yada Nolvachai, Bayden R. Wood, Philip J. Marriott. Relationships in Gas Chromatography-Fourier Transform Infrared Spectroscopy:Comprehensive and Multilinear Analysis. Separations,7(27)(2020).

DOI: 10.3390/separations7020027

Google Scholar

[34] Poletto, M., A.J. Zattera, and R.M.C. Santana. Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of Applied Polymer Science, 126(2012) 336–343.

DOI: 10.1002/app.36991

Google Scholar

[35] Khakifirooz, A., F. Ravanbakhsh, A. Samariha, M. Kiaei. Investigating the possibility of chemi-mechanical pulping of bagasse. BioResources, 8(2013) 21–30.

DOI: 10.15376/biores.8.1.21-30

Google Scholar

[36] Md.Eyazul Haque, Md.Wahab Khan, Moly Rani. Studies on morphological, physico-chemical and mechanical properties of wheat straw reinforced polyester resin composite.Polymer Bulletin, (2021).

DOI: 10.1007/s00289-021-03630-z

Google Scholar

[37] Miranda, I., J. Gominho, H. Pereira. Incorporation of bark and tops in Eucalyptus globulus wood pulping. BioResources, 7(2012) 4350–4361.

Google Scholar

[38] Hemmasi, A.H., A. Samariha, A. Tabei, M. Nemati, A. Khakifirooz. Study of the morphological and chemical composition of fibers from Iranian sugarcane bagasse. American-Eurasian Journal of Agricultural and Environmental Sciences,11(2011) 478–481.

Google Scholar

[39] Sable, I., U. Grinfelds, A. Jansons, L. Vikele, I. Irbe, A. Verovkins, A. Treimanis. Comparison of the properties of wood and pulp fibers from lodgepole pine (Pinus contorta) and Scot's pine (Pinus sylvestris). BioResources, 7(2012)1771–1783.

DOI: 10.15376/biores.7.2.1771-1783

Google Scholar

[40] Ilhan Deniz, Onur Tolga Okan, Bedri Serdar, Halil İbrahim Şahin. Kraft and modified Kraft pulping of bamboo (phyllostachys bambusoides).Drewno 60(2017)1644-3985.

Google Scholar

[41] Edyta Malachowska, Marcin Dubowik, Piotr Boruszewski, Joanna Lojewska, Piotr Przybysz.Influence of lignin content in cellulose pulp on paper durability.Scientific Reports,10(2020)19998.

DOI: 10.1038/s41598-020-77101-2

Google Scholar

[42] Kiaei, M., M. Tajik, and R. Vaysi. Chemical and biometrical properties of plum wood and its application in pulp and paper production. Maderas: Science and Technology, 16(2014)313–322.

DOI: 10.4067/s0718-221x2014005000024

Google Scholar

[43] Mercy, O.B., F.J. Adeola, O.A. Olajide, A. Babatunde, and F. James. Evaluation of fiber characteristics of Ricinodedron Heudelotii (Baill, Pierre Ex Pax) for pulp and paper making. International Journal of Science and Technology, 6(2017)634–641.

Google Scholar

[44] Muhammad Danish, Muhammad Naqvi, Usman Farooq, Salman Naqvi. Characterization of South Asian agricultural residues for potential utilization in future energy mix,. Science Direct, 75(2015) 2974 – 2980.

DOI: 10.1016/j.egypro.2015.07.604

Google Scholar

[45] Sugesty, S., T. Kardiansyah, H. Hardiani. Bamboo as raw materials for dissolving pulp with environmentally friendly technology for rayon fiber. Procedia Chemistry,17 (2015)194– 199.

DOI: 10.1016/j.proche.2015.12.122

Google Scholar

[46] Nieminen, Kaarlo, Testova, Lidia, Paananen, Markus and Sixta, Herbert. Novel insight in carbohydrate degradation during alkaline treatment, Holzforschung, 69(6) (2015)667-675. https://doi.org/10.1515/hf-2014-0306.

DOI: 10.1515/hf-2014-0306

Google Scholar

[47] Dariusz Danielewicz, Barbara Surma-S´lusarska. Properties and fibre characterization of bleached hemp, birch and pine pulps:a comparison.Cellulose, 24(2017)5173–5186.

DOI: 10.1007/s10570-017-1476-6

Google Scholar

[48] Kim, K. J., Hong, S. B., and Eom, T. J., Preparation of Eucalyptus pulp by the mild condition of low-temperature, atmospheric pressure, and short-reaction-time with high boiling-point solvent and pulp properties, Cellulose, 25(1)(2018)753-761.

DOI: 10.1007/s10570-017-1564-7

Google Scholar

[49] Mohamed Bassiouni, Morsy Ghazy, Effect of Temperature and Time on the Kraft Pulping of Egyptian Bagasse. International Journal of Science and Research, 5(2)(2016)2319-7064.

DOI: 10.21275/v5i2.nov161065

Google Scholar

[50] Aya Zoghlami and Gabriel Paes. Lignocellulosic Biomass: Understanding Recalcitrance and predicting Hydrolysis: A mine-review. Frontier in chemistry, 7(2019)874–3389.

DOI: 10.3389/fchem.2019.00874

Google Scholar

[51] Iskalieva, A., B. Mbouyem, P.R. Gogate, M. Horvath, P.G. Horvath, and L. Csoka. Ultrasonics sonochemistry cavitation assisted delignification of wheat straw: A review. Ultrasonics Sonochemistry, 19(2012) 984–993.

DOI: 10.1016/j.ultsonch.2012.02.007

Google Scholar