Defect Evolution in Laser Remelting of Thermally Sprayed Cr3C2-NiCr Cermet Coating

Article Preview

Abstract:

Pores and weak bonding are the inherently drawbacks for thermally sprayed coating. Laser beam is an attractive approach to remelt thermal spray coating for obtaining fully dense coating with metallurgical bonding with substrate. However, defects of holes or cracks are highly inevitable with unmatching remelting processing parameters. In this work, a thermally sprayed Cr3C2-NiCr cermet coating by high velocity oxygen fuel spraying was post-processed by laser remelting with a series of varying beam energy densities from 37.5 J/mm2 to 225 J/mm2. The defect evolution was investigated by both experimental and numerical simulation methods. Large holes and through-thickness cracks were typical defects observed in the remelt coating by optical microscopy. The experimental results show that remelting-induced defects evolve into three stages with laser energy density. The effect of energy density on remelt structure was further verified with the temperature field by numerical simulation with ABAQUS code. The stress field interpreted the crack formation at periodical formation sites. The results on the defect evolution shed light on obtaining functional coatings for industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-38

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Tejero-Martin, M. Rezvani Rad, A. McDonald, T. Hussain, Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings, J Therm Spray Technol 28(4) (2019) 598-644.

DOI: 10.1007/s11666-019-00857-1

Google Scholar

[2] ASM Handbook Thermal Spray Technology, ASM International, (2013).

Google Scholar

[3] R.K. Shukla, V. Patel, A. Kumar, Modeling of Rapid Solidification with Undercooling Effect During Droplet Flattening on a Substrate in Coating Formation, J Therm Spray Technol 27(3) (2018) 269-287.

DOI: 10.1007/s11666-017-0666-y

Google Scholar

[4] Y. Wang, Y. Bai, K. Wu, J. Zhou, M.G. Shen, W. Fan, H.Y. Chen, Y.X. Kang, B.Q. Li, Flattening and solidification behavior of in-flight droplets in plasma spraying and micro/macro-bonding mechanisms, J Alloys Compd 784 (2019) 834-846.

DOI: 10.1016/j.jallcom.2019.01.076

Google Scholar

[5] M.M. Lima, C. Godoy, P.J. Modenesi, J.C. Avelar-Batista, A. Davison, A. Matthews, Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC–Co thermally sprayed coatings, Surf Coat Technol 177-178 (2004) 489-496.

DOI: 10.1016/s0257-8972(03)00917-4

Google Scholar

[6] R. Gonzalez, M. Cadenas, R. Fernandez, J.L. Cortizo, E. Rodriguez, Wear behaviour of flame sprayed NiCrBSi coating remelted by flame or by laser, Wear 262(3) (2007) 301-307.

DOI: 10.1016/j.wear.2006.05.009

Google Scholar

[7] L. Chen, H. Wang, C. Zhao, S. Lu, Z. Wang, J. Sha, S. Chen, L. Zhang, Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating, Surf Coat Technol 369 (2019) 31-43.

DOI: 10.1016/j.surfcoat.2019.04.052

Google Scholar

[8] D. Jiyu, L. Fangyi, L. Yanle, W. Liming, L. Haiyang, R. Xueju, Z. Xingyi, Influences of plasma arc remelting on microstructure and service performance of Cr3C2-NiCr/NiCrAl composite coating, Surf Coat Technol 369 (2019) 16-30.

DOI: 10.1016/j.surfcoat.2019.04.037

Google Scholar

[9] X.C. Li, H.L. Tian, S.C. Wei, H. Tong, C. Zhao, B.S. Xu, Characteristic of Remelting Ni60 Alloy Coating by High Temperature Resistance Electric Furnace, Adv Mater Res 531 (2012) 194-198.

DOI: 10.4028/www.scientific.net/amr.531.194

Google Scholar

[10] N. Kazamer, R. Muntean, P.C. Valean, D.T. Pascal, G. Marginean, V.A. Serban, Comparison of Ni-Based Self-Fluxing Remelted Coatings for Wear and Corrosion Applications, Materials 14(12) (2021).

DOI: 10.3390/ma14123293

Google Scholar

[11] Y.-Z. Wu, W.-B. Liao, F. Wang, M.-L. Wang, C.-Y. Yu, Z. Wang, Z.-X. Guo, Z.-Y. Liu, Y.-B. Cao, J.-J. Huang, Effect of electron beam remelting treatments on the performances of plasma sprayed zirconia coatings, J Alloys Compd 756 (2018) 33-39.

DOI: 10.1016/j.jallcom.2018.05.004

Google Scholar

[12] J. Cai, C.Z. Gao, P. Lv, C.L. Zhang, Q.F. Guan, J.Z. Lu, X.J. Xu, Hot corrosion behaviour of thermally sprayed CoCrAlY coating irradiated by high-current pulsed electron beam, J Alloys Compd 784 (2019) 1221-1233.

DOI: 10.1016/j.jallcom.2019.01.071

Google Scholar

[13] W.B. Liao, Z.Y. Liu, M.J. He, C.S. Feng, F. Wang, J.J. Huang, Effect of Electron Beam Remelting Treatments on the Microstructure and Properties of Atmospheric Plasma Sprayed Tungsten Coatings, J Therm Spray Technol 30(8) (2021) 2128-2137.

DOI: 10.1007/s11666-021-01281-0

Google Scholar

[14] E. Chun, C. Park, H. Nishikawa, M. Kim, Microstructural characterization of Ni-based self-fluxing alloy after selective surface-engineering using diode laser, Appl Surface Sci 442 (2018) 726-735.

DOI: 10.1016/j.apsusc.2018.02.226

Google Scholar

[15] C. Ciubotariu, D. Frunzăverde, G. Mărginean, V. Șerban, A. Birdeanu, Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings, Opt Laser Technol 77 (2016) 98-103.

DOI: 10.1016/j.optlastec.2015.09.005

Google Scholar

[16] L. Janka, J. Norpoth, S. Eicher, M. Rodríguez Ripoll, P. Vuoristo, Improving the toughness of thermally sprayed Cr3C2-NiCr hardmetal coatings by laser post-treatment, Mater Des 98 (2016) 135-142.

DOI: 10.1016/j.matdes.2016.03.007

Google Scholar

[17] J. Suutala, J. Tuominen, P. Vuoristo, Laser-assisted spraying and laser treatment of thermally sprayed coatings, Surf Coat Technol 201(5) (2006) 1981-1987.

DOI: 10.1016/j.surfcoat.2006.04.042

Google Scholar

[18] J.W. Liu, R. Bolot, S. Costil, M.P. Planche, Transient thermal and mechanical analysis of NiCrBSi coatings manufactured by hybrid plasma spray process with in-situ laser remelting, Surf Coat Technol 292 (2016) 132-143.

DOI: 10.1016/j.surfcoat.2016.03.031

Google Scholar

[19] R.D. Castro, E.I.M. Curi, L.F.F. Inacio, A.D. Rocha, M. Pereira, R.G.N. Silva, A.D.P. Pereira, Laser remelting of WC-CoCr surface coated by HVOF: Effect on the tribological properties and energy efficiency, Surf Coat Technol 427 (2021).

DOI: 10.1016/j.surfcoat.2021.127841

Google Scholar

[20] J. Yu, Y. Wang, F. Zhou, L. Wang, Z.Y. Pan, Laser remelting of plasma-sprayed nanostructured Al2O3–20 wt.% ZrO2 coatings onto 316L stainless steel, Appl Surface Sci 431 (2018) 112-121.

DOI: 10.1016/j.apsusc.2017.06.204

Google Scholar

[21] B. Das, A.K. Nath, P.P. Bandyopadhyay, Scratch resistance and damage mechanism of laser remelted thermally sprayed ceramic coating, Surf Coat Technol 364 (2019) 157-169.

DOI: 10.1016/j.surfcoat.2019.02.078

Google Scholar

[22] P. Varghese, E. Vetrivendan, B.R.V. Krupa, P.K. Shukla, R.K. Gupta, E.H. Rao, G. Puppala, S. Ningshen, Molten sodium corrosion of laser surface remelted yttria-stabilized zirconia thermal barrier coatings, Corros Sci 191 (2021).

DOI: 10.1016/j.corsci.2021.109740

Google Scholar

[23] C. Wang, J. Yu, Y. Zhang, Y. Yu, Phase evolution and solidification cracking sensibility in laser remelting treatment of the plasma-sprayed CrMnFeCoNi high entropy alloy coating, Mater Des 182 (2019) 108040.

DOI: 10.1016/j.matdes.2019.108040

Google Scholar

[24] Q.A. Li, B. Gnanasekaran, Y. Fu, G.R. Liu, Prediction of Thermal Residual Stress and Microstructure in Direct Laser Metal Deposition via a Coupled Finite Element and Multiphase Field Framework, Jom 72(1) (2020) 496-508.

DOI: 10.1007/s11837-019-03922-w

Google Scholar

[25] Z.H. Li, S. Yang, B. Liu, W.P. Liu, Z.Z. Kuai, Y.F. Nie, Simulation of temperature field and stress field of selective laser melting of multi-layer metal powder, Opt Laser Technol 140 (2021).

DOI: 10.1016/j.optlastec.2020.106782

Google Scholar

[26] C. Teng, D. Pal, H. Gong, K. Zeng, K. Briggs, N. Patil, B. Stucker, A Review of Defect Modeling in Laser Material Processing, Addit Manuf 14(14) (2017) 137-147.

DOI: 10.1016/j.addma.2016.10.009

Google Scholar

[27] K. Dai, L.L. Shaw, Thermal and stress modeling of multi-material laser processing, Acta Mater 49(20) (2001) 4171-4181.

DOI: 10.1016/s1359-6454(01)00312-3

Google Scholar

[28] J. Liu, Y. Wang, S. Costil, R. Bolot, Numerical and experimental analysis of molten pool dimensions and residual stresses of NiCrBSi coating treated by laser post-remelting, Surf Coat Technol 318 (2017) 341-348.

DOI: 10.1016/j.surfcoat.2017.03.024

Google Scholar

[29] E. Qin, B. Wang, W. Li, W. Ma, H. Lu, S. Wu, Optimized Microstructure and Properties of Cr3C2-NiCr Cermet Coating by HVOF/Laser Hybrid Processing, J Therm Spray Technol 28 (2019) 1072-1080.

DOI: 10.1007/s11666-019-00877-x

Google Scholar

[30] H. Chen, C. Xu, Q. Zhou, I.M. Hutchings, P.H. Shipway, J. Liu, Micro-scale abrasive wear behaviour of HVOF sprayed and laser-remelted conventional and nanostructured WC-Co coatings, Wear 258(1) (2005) 333-338.

DOI: 10.1016/j.wear.2004.09.044

Google Scholar