[1]
D. Tejero-Martin, M. Rezvani Rad, A. McDonald, T. Hussain, Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings, J Therm Spray Technol 28(4) (2019) 598-644.
DOI: 10.1007/s11666-019-00857-1
Google Scholar
[2]
ASM Handbook Thermal Spray Technology, ASM International, (2013).
Google Scholar
[3]
R.K. Shukla, V. Patel, A. Kumar, Modeling of Rapid Solidification with Undercooling Effect During Droplet Flattening on a Substrate in Coating Formation, J Therm Spray Technol 27(3) (2018) 269-287.
DOI: 10.1007/s11666-017-0666-y
Google Scholar
[4]
Y. Wang, Y. Bai, K. Wu, J. Zhou, M.G. Shen, W. Fan, H.Y. Chen, Y.X. Kang, B.Q. Li, Flattening and solidification behavior of in-flight droplets in plasma spraying and micro/macro-bonding mechanisms, J Alloys Compd 784 (2019) 834-846.
DOI: 10.1016/j.jallcom.2019.01.076
Google Scholar
[5]
M.M. Lima, C. Godoy, P.J. Modenesi, J.C. Avelar-Batista, A. Davison, A. Matthews, Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC–Co thermally sprayed coatings, Surf Coat Technol 177-178 (2004) 489-496.
DOI: 10.1016/s0257-8972(03)00917-4
Google Scholar
[6]
R. Gonzalez, M. Cadenas, R. Fernandez, J.L. Cortizo, E. Rodriguez, Wear behaviour of flame sprayed NiCrBSi coating remelted by flame or by laser, Wear 262(3) (2007) 301-307.
DOI: 10.1016/j.wear.2006.05.009
Google Scholar
[7]
L. Chen, H. Wang, C. Zhao, S. Lu, Z. Wang, J. Sha, S. Chen, L. Zhang, Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating, Surf Coat Technol 369 (2019) 31-43.
DOI: 10.1016/j.surfcoat.2019.04.052
Google Scholar
[8]
D. Jiyu, L. Fangyi, L. Yanle, W. Liming, L. Haiyang, R. Xueju, Z. Xingyi, Influences of plasma arc remelting on microstructure and service performance of Cr3C2-NiCr/NiCrAl composite coating, Surf Coat Technol 369 (2019) 16-30.
DOI: 10.1016/j.surfcoat.2019.04.037
Google Scholar
[9]
X.C. Li, H.L. Tian, S.C. Wei, H. Tong, C. Zhao, B.S. Xu, Characteristic of Remelting Ni60 Alloy Coating by High Temperature Resistance Electric Furnace, Adv Mater Res 531 (2012) 194-198.
DOI: 10.4028/www.scientific.net/amr.531.194
Google Scholar
[10]
N. Kazamer, R. Muntean, P.C. Valean, D.T. Pascal, G. Marginean, V.A. Serban, Comparison of Ni-Based Self-Fluxing Remelted Coatings for Wear and Corrosion Applications, Materials 14(12) (2021).
DOI: 10.3390/ma14123293
Google Scholar
[11]
Y.-Z. Wu, W.-B. Liao, F. Wang, M.-L. Wang, C.-Y. Yu, Z. Wang, Z.-X. Guo, Z.-Y. Liu, Y.-B. Cao, J.-J. Huang, Effect of electron beam remelting treatments on the performances of plasma sprayed zirconia coatings, J Alloys Compd 756 (2018) 33-39.
DOI: 10.1016/j.jallcom.2018.05.004
Google Scholar
[12]
J. Cai, C.Z. Gao, P. Lv, C.L. Zhang, Q.F. Guan, J.Z. Lu, X.J. Xu, Hot corrosion behaviour of thermally sprayed CoCrAlY coating irradiated by high-current pulsed electron beam, J Alloys Compd 784 (2019) 1221-1233.
DOI: 10.1016/j.jallcom.2019.01.071
Google Scholar
[13]
W.B. Liao, Z.Y. Liu, M.J. He, C.S. Feng, F. Wang, J.J. Huang, Effect of Electron Beam Remelting Treatments on the Microstructure and Properties of Atmospheric Plasma Sprayed Tungsten Coatings, J Therm Spray Technol 30(8) (2021) 2128-2137.
DOI: 10.1007/s11666-021-01281-0
Google Scholar
[14]
E. Chun, C. Park, H. Nishikawa, M. Kim, Microstructural characterization of Ni-based self-fluxing alloy after selective surface-engineering using diode laser, Appl Surface Sci 442 (2018) 726-735.
DOI: 10.1016/j.apsusc.2018.02.226
Google Scholar
[15]
C. Ciubotariu, D. Frunzăverde, G. Mărginean, V. Șerban, A. Birdeanu, Optimization of the laser remelting process for HVOF-sprayed Stellite 6 wear resistant coatings, Opt Laser Technol 77 (2016) 98-103.
DOI: 10.1016/j.optlastec.2015.09.005
Google Scholar
[16]
L. Janka, J. Norpoth, S. Eicher, M. Rodríguez Ripoll, P. Vuoristo, Improving the toughness of thermally sprayed Cr3C2-NiCr hardmetal coatings by laser post-treatment, Mater Des 98 (2016) 135-142.
DOI: 10.1016/j.matdes.2016.03.007
Google Scholar
[17]
J. Suutala, J. Tuominen, P. Vuoristo, Laser-assisted spraying and laser treatment of thermally sprayed coatings, Surf Coat Technol 201(5) (2006) 1981-1987.
DOI: 10.1016/j.surfcoat.2006.04.042
Google Scholar
[18]
J.W. Liu, R. Bolot, S. Costil, M.P. Planche, Transient thermal and mechanical analysis of NiCrBSi coatings manufactured by hybrid plasma spray process with in-situ laser remelting, Surf Coat Technol 292 (2016) 132-143.
DOI: 10.1016/j.surfcoat.2016.03.031
Google Scholar
[19]
R.D. Castro, E.I.M. Curi, L.F.F. Inacio, A.D. Rocha, M. Pereira, R.G.N. Silva, A.D.P. Pereira, Laser remelting of WC-CoCr surface coated by HVOF: Effect on the tribological properties and energy efficiency, Surf Coat Technol 427 (2021).
DOI: 10.1016/j.surfcoat.2021.127841
Google Scholar
[20]
J. Yu, Y. Wang, F. Zhou, L. Wang, Z.Y. Pan, Laser remelting of plasma-sprayed nanostructured Al2O3–20 wt.% ZrO2 coatings onto 316L stainless steel, Appl Surface Sci 431 (2018) 112-121.
DOI: 10.1016/j.apsusc.2017.06.204
Google Scholar
[21]
B. Das, A.K. Nath, P.P. Bandyopadhyay, Scratch resistance and damage mechanism of laser remelted thermally sprayed ceramic coating, Surf Coat Technol 364 (2019) 157-169.
DOI: 10.1016/j.surfcoat.2019.02.078
Google Scholar
[22]
P. Varghese, E. Vetrivendan, B.R.V. Krupa, P.K. Shukla, R.K. Gupta, E.H. Rao, G. Puppala, S. Ningshen, Molten sodium corrosion of laser surface remelted yttria-stabilized zirconia thermal barrier coatings, Corros Sci 191 (2021).
DOI: 10.1016/j.corsci.2021.109740
Google Scholar
[23]
C. Wang, J. Yu, Y. Zhang, Y. Yu, Phase evolution and solidification cracking sensibility in laser remelting treatment of the plasma-sprayed CrMnFeCoNi high entropy alloy coating, Mater Des 182 (2019) 108040.
DOI: 10.1016/j.matdes.2019.108040
Google Scholar
[24]
Q.A. Li, B. Gnanasekaran, Y. Fu, G.R. Liu, Prediction of Thermal Residual Stress and Microstructure in Direct Laser Metal Deposition via a Coupled Finite Element and Multiphase Field Framework, Jom 72(1) (2020) 496-508.
DOI: 10.1007/s11837-019-03922-w
Google Scholar
[25]
Z.H. Li, S. Yang, B. Liu, W.P. Liu, Z.Z. Kuai, Y.F. Nie, Simulation of temperature field and stress field of selective laser melting of multi-layer metal powder, Opt Laser Technol 140 (2021).
DOI: 10.1016/j.optlastec.2020.106782
Google Scholar
[26]
C. Teng, D. Pal, H. Gong, K. Zeng, K. Briggs, N. Patil, B. Stucker, A Review of Defect Modeling in Laser Material Processing, Addit Manuf 14(14) (2017) 137-147.
DOI: 10.1016/j.addma.2016.10.009
Google Scholar
[27]
K. Dai, L.L. Shaw, Thermal and stress modeling of multi-material laser processing, Acta Mater 49(20) (2001) 4171-4181.
DOI: 10.1016/s1359-6454(01)00312-3
Google Scholar
[28]
J. Liu, Y. Wang, S. Costil, R. Bolot, Numerical and experimental analysis of molten pool dimensions and residual stresses of NiCrBSi coating treated by laser post-remelting, Surf Coat Technol 318 (2017) 341-348.
DOI: 10.1016/j.surfcoat.2017.03.024
Google Scholar
[29]
E. Qin, B. Wang, W. Li, W. Ma, H. Lu, S. Wu, Optimized Microstructure and Properties of Cr3C2-NiCr Cermet Coating by HVOF/Laser Hybrid Processing, J Therm Spray Technol 28 (2019) 1072-1080.
DOI: 10.1007/s11666-019-00877-x
Google Scholar
[30]
H. Chen, C. Xu, Q. Zhou, I.M. Hutchings, P.H. Shipway, J. Liu, Micro-scale abrasive wear behaviour of HVOF sprayed and laser-remelted conventional and nanostructured WC-Co coatings, Wear 258(1) (2005) 333-338.
DOI: 10.1016/j.wear.2004.09.044
Google Scholar