A Critical Review on Ultrasonic Assisted Electric Discharge Machining and Various Processes

Article Preview

Abstract:

In the previous many years, several attempts have been made to enhance the effectiveness of the Spark erosion machining process. This review clearly mentioned all the work outputs of Vibration Assisted Electric Discharge Machining at a glance. One of these non-traditional machining techniques, called electric discharge machining (EDM), produces higher surface finishes, high levels of precision, and machinability. Ultrasonic vibrations are used in many industrial processes, such as material removal operations for form generation on material surfaces. Lately, there has been an increasing trend toward using ultrasonic vibration to enhance process performance. Ultrasonic vibration finds noteworthy application in industrial processes such as spark erosion machining, where vibration is enhanced by using ultrasonic waves as a medium. The electrode's ultrasonic vibration modifies the discharge gap and improves the chip removal capability, making it a very effective technique for raising EDM efficiency. An overview of the literature on the application of ultrasonic vibrations in electric discharge machining is presented in this article. Review work has been done on how ultrasonic vibrations can be applied, their ability to affect performance metrics, how to predict and optimise processes, and how to use them with advanced materials that can be difficult to cut. Future requirements for research have been highlighted to increase the ability and potential for the technique of electric discharge machining based on an evaluation of the present state of ultrasonic-assisted electric discharge machining.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-21

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Goioganaa, J.A. Sarasua, J.M. Ramos (2018). Ultrasonic assisted electrical discharge machining for high aspect ratio blind holes. 19th CIRP Conference on Electro Physical and Chemical Machining, 23-27 April 2017, Bilbao, Spain, Procedia CIRP 68 (2018) 81 – 85.

DOI: 10.1016/j.procir.2017.12.026

Google Scholar

[2] M. Iwai, S. Ninomiya, K. Suzuki (2013).Improvement of EDM properties of PCD with electrode vibrated by ultrasonic transducer. The Seventeenth CIRP Conference on Electro Physical and Chemical Machining (ISEM), Procedia CIRP 6 (2013) 146 – 150.

DOI: 10.1016/j.procir.2013.03.070

Google Scholar

[3] A. Okada (2), A.Yamaguchi, K.Ota (2017). Improvement of curved hole EDM drilling performance using suspended ball electrode by work piece vibration, CIRP-1683 (2017) 90-94.

DOI: 10.1016/j.cirp.2017.04.125

Google Scholar

[4] Jiangtao Che,Tianfeng Zhou,Xijing Zhu,Wenjun Kong,Zhibin Wang, Xiaodong Xie(2016). Experimental study on horizontal ultrasonic electrical discharge machining, Journal of Materials Processing Technology 231 (2016) 312–318.

DOI: 10.1016/j.jmatprotec.2016.01.003

Google Scholar

[5] A. Gholipoor, M.R. Shabgard, M. Mohammadpourfard, H.Abbasi (2020).Comparative Study of Ultrasonic Vibrations Assisted EDM and Magnetic Field Assisted EDM Processes, Iranian Journal of Mechanical Engineering Vol. 21, No. 1, March 2020.

Google Scholar

[6] Maninder Singh, Shankar Singh (2021). Multiple response optimization of ultrasonic assisted electric discharge machining of Nimonic 75: A Taguchi-Grey relational analysis approach, Materials Today: Proceedings, 2214-7853.

DOI: 10.1016/j.matpr.2021.01.173

Google Scholar

[7] Hongbing wang, Chunhua sun and Yifei Yang (2020). An Ultrasonic Vibration Assisted Electrical Discharge Machining Device with Work piece Vibration, Journal of Applied Science and Engineering, Vol. 24, No 1, Page 21-32.

Google Scholar

[8] Nurbol Sabyrov, M. P. Jahan, Azat Bilal and Asma Perveen (2018). Ultrasonic Vibration Assisted Electro-Discharge Machining (EDM)—An Overview, Materials 2019, 12, 522.

DOI: 10.3390/ma12030522

Google Scholar

[9] Sohaib Raza, Jay Airao, Chandrakant Kumar Nirala (2022). Performance Measurement and Discharge Data Based Analysis of Ultrasonic Assisted EDM for Ti6Al4V, Journal of Micro- and Nano-Manufacturing, SEPTEMBER2022, Vol. 10 / 031004-1.

DOI: 10.1115/1.4062819

Google Scholar

[10] Behnam khosrozadeh, Mohammadreza shabgard (2017). Effects of simultaneous ultrasonic vibration of tool and addition of carbon nano tube into the die electric in EDM process on machining outputs and surface integrity of Ti-6AI-4V alloy, Indian Journal of Engineering and Material Sciences, Vol.24, pp.45-56 .

DOI: 10.1016/j.jmapro.2016.11.016

Google Scholar

[11] Maninder Singh, Shankar Singh (2021). Comparative Capabilities of Conventional and Ultrasonic-Assisted-Electrical Discharge Machining of Nimonic Alloy 75, JMEPEG (2022) 31:4611–4623.

DOI: 10.1007/s11665-022-06601-1

Google Scholar

[12] Rajusing Rathod, Dinesh Kamble and Nitin Ambhore (2022). Performance evaluation of electric discharge machining of titanium alloy-a review, Journal of Engineering and Applied Science, (2022), pp.64-69.

DOI: 10.1186/s44147-022-00118-z

Google Scholar

[13] Q.H. Zhang, R.Du, J.H. Zhang, Q.B. Zhang (2006).An Investigation of ultrasonic assisted electrical discharge machining in gas, International Journal of Machine Tools and Manufacture 46 (2006), pp.1582-1588.

DOI: 10.1016/j.ijmachtools.2005.09.023

Google Scholar

[14] Bharat C Khatri, Pravin Rathod, and Janak B Valaki (2015). Ultrasonic vibration–assisted electric discharge machining: A research review, Proc I Mech E Part B: J Engineering Manufacture (2015).

DOI: 10.1177/0954405415573061

Google Scholar

[15] K.T. Hoang, S.H. Yang (2013). A study on the effect of different vibration-assisted methods in micro-WEDM, Journal of Materials Processing Technology (2013).

DOI: 10.1016/j.jmatprotec.2013.03.025

Google Scholar

[16] Gunawan Setia Prihandana, Muslim Mahardika, M. Hamdi, Y.S. Wong, Kimiyuki Mitsui (2009). Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes—Taguchi approach, International Journal of Machine Tools & Manufacture 49 (2009) 1035–1041.

DOI: 10.1016/j.ijmachtools.2009.06.014

Google Scholar

[17] M Ghoreishi, J.Atkinson (2001).A comparative experimental study of machining characteristics in vibratory, rotary and Vibro-Rotary electrical discharge machining, Journal of Materials Processing Technology, 120 (2002), pp.374-384.

DOI: 10.1016/s0924-0136(01)01160-8

Google Scholar

[18] Vineet Srivastava, Pulak M. Pandey (2012) Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode, Journal of Manufacturing Processes 14 (2012) 393–402.

DOI: 10.1016/j.jmapro.2012.05.001

Google Scholar

[19] M.G. Xu, J.H. Zhang, Y. Li, Q.H. Zhang, S.F. Ren (2009). Material removal mechanisms of cemented carbides machined by ultrasonic vibration assisted EDM in gas medium, journal of materials processing technology 209 (2009) 1742–1746.

DOI: 10.1016/j.jmatprotec.2008.04.031

Google Scholar

[20] Liew, P.J.; Yan, J.; Kuriyagawa, T. Fabrication of deep micro-holes in reaction-bonded SiC by ultrasonic cavitation assisted micro-EDM, Int. J. Mach. Tools Manuf. 2014, 76, 13–20.

DOI: 10.1016/j.ijmachtools.2013.09.010

Google Scholar

[21] Kumar, S.; Kumar, S.; Kumar, S.; Saini, T. An Experimental Study of Low Frequency Vibration Assisted EDM in AISI 1045 steel, Res. J. Eng. Sci. 2016, 5, 11–16.

Google Scholar

[22] Qinjian, Z.; Luming, Z.; Jianyong, L.; Yonglin, C.; Heng, W.; Yunan, C.; Haikuo, S.; Xiaoqing, Y.; Minzhi, L. Study on electrical discharge and ultrasonic assisted mechanical combined machining of polycrystalline diamond. Procedia CIRP 2013, 6, 589–593.

DOI: 10.1016/j.procir.2013.03.067

Google Scholar

[23] Muttamara, A.; Nakwonga, P.; Thongruang, R. Investigations on Ultrasonic vibration Assisted EDM in Tin Powder Mixed Dielectric. Int. J. Mech. Prod. Eng. 2018, 6, 2320.

Google Scholar

[24] Schubert, A.; Zeidler, H.; Hackert-Oschäzchen, M.; Schneider, J.; Hahn, M. Enhancing Micro-EDM using Ultrasonic Vibration and Approaches for Machining of Non-conducting Ceramics, J. Mech. Eng. 2013, 59, 156–164.

DOI: 10.5545/sv-jme.2012.442

Google Scholar

[25] Abdullah, A.; Shabgard, M.R.; Ivanov, A.; Shervanyi-Tabar, M.T. Effect of ultrasonic-assisted EDM on the surface integrity of cemented tungsten carbide (WC-Co), Int. J. Adv. Manuf. Technol. 2009, 41, 268.

DOI: 10.1007/s00170-008-1476-7

Google Scholar

[26] Khan, M. Y., & Rao, P. S. (2019). Hybridization of electrical discharge machining process. International Journal of Engineering and Advanced Technology, 9(1), 1059–1065.

DOI: 10.35940/ijeat.A9477.109119

Google Scholar

[27] Lin YC, Chow HM, Tsui HP, Chen YF. Study on ultrasonic vibration in gas and optimization of a novel process of EDM, Advanced Materials Research. 2013; 675: 365-369.

DOI: 10.4028/www.scientific.net/amr.675.365

Google Scholar

[28] M.Y. Khan, P.S. Rao, B.S. Pabla, A Framework for Surface Modification by Electrical Discharge Coating using Variable Density Electrodes, In E3S Web of Conf EDP Sci 3 (2021) 1–6.

DOI: 10.1051/e3sconf/202130901093

Google Scholar

[29] M. Rizwee, P.S. Rao, M.Y. Khan, Recent advancement in electric discharge machining of metal matrix composite materials, Mat Today: Proc 3 (2021) 2829–2836.

DOI: 10.1016/j.matpr.2020.08.657

Google Scholar

[30] P.S. Rao, P.K. Jain, D.K. Dwivedi, Precision Finishing of External Cylindrical Surfaces of EN8 Steel by Electro Chemical Honing (ECH) Process using OFAT Technique, Elsevier Publications, J. of Mat Today Proc 2 (4) (2015) 3220–3229.

DOI: 10.1016/j.matpr.2015.07.117

Google Scholar

[31] P.S. Rao, P.K. Jain, D.K. Dwivedi, Study and Effect of Process Parameters on External Cylindrical Surfaces of Titanium Alloy by Electro Chemical Honing (ECH) Process, Elsevier Publi, J. of Procedia engg 26 (2016) 570– 579.

DOI: 10.2507/26th.daaam.proceedings.078

Google Scholar

[32] P.S. Rao, P.K. Jain, D.K. Dwivedi, Optimization of Key Process Parameters on Electro Chemical Honing (ECH) of External Cylindrical Surfaces of Titanium Alloy Ti-6Al- 4V, Elsevier Publi, J. of Mat Today Proc 4 (2) (2017) 2279–2289.

DOI: 10.1016/j.matpr.2017.02.076

Google Scholar

[33] P.S. Rao, P.K. Jain, D.K. Dwivedi, Electro Chemical Honing (ECH) of External Cylindrical Surfaces of Titanium Alloys, Procedia Engineering 100 (2015) 936 – 945.

DOI: 10.1016/j.proeng.2015.01.452

Google Scholar