[1]
O.N. Senkov, D.B. Miracle, k.J. Chaput, et al. Development and exploration of refractory high entropy alloys—A review. Journal of Materials Research 33, 3092–3128 (2018).
DOI: 10.1557/jmr.2018.153
Google Scholar
[2]
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics, Volume 18, Issue 9, 2010, Pages 1758-1765.
DOI: 10.1016/j.intermet.2010.05.014
Google Scholar
[3]
Liqiang Zhan, Jiabin Hou, Guofeng Wang, Yuqing Chen, Huan Li, Qingxin Kang, Zhenlun Li, Xunhu Xu, Tongxu Zhou, Chunxu Wang, Achieved strength-plastic trade-off in HfMoNbTaTi refractory high-entropy alloy via powder metallurgy process, Materials Science and Engineering: A,Volume 910, 2024, 146830
DOI: 10.1016/j.msea.2024.146830
Google Scholar
[4]
Leilei Wang, Linqin Li, Longxiang Sun, Yuanhong Qian, Xiaohong Zhan, AlNbTiVZr refractory high entropy alloy combining exceptional high-temperature performance and excellent ductility fabricated by laser direct energy deposition, Journal of Alloys and Compounds, Volume 999, 2024, 174878.
DOI: 10.1016/j.jallcom.2024.174878
Google Scholar
[5]
hien-Chang Juan, Ming-Hung Tsai, Che-Wei Tsai, Chun-Ming Lin, Woei-Ren Wang, Chih-Chao Yang, Swe-Kai Chen, Su-Jien Lin, Jien-Wei Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics, Volume 62, 2015, Pages 76-83.
DOI: 10.1016/j.intermet.2015.03.013
Google Scholar
[6]
Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li, Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures, Journal of Materials Science & Technology. Volume 97, 2022, Pages 229-238. https://doi.org/.
DOI: 10.1016/j.jmst.2021.05.015
Google Scholar
[7]
Kaiguang Luo, Hanqing Xiong, Yun Zhang, Hao Gu, Zhide Li, Charlie Kong, Hailiang Yu, AA1050 metal matrix composites reinforced by high-entropy alloy particles via stir casting and subsequent rolling, Journal of Alloys and Compounds. Volume 893, 2022, 162370.
DOI: 10.1016/j.jallcom.2021.162370
Google Scholar
[8]
Long Xu, Hui Chen, Yuefei Jia, Dongpeng Wang, Shiwei Wu, Yandong Jia, Gang Wang, Zixu Guo, Yilun Xu, Revealing effects of creep damage on high-temperature fatigue behavior for HfNbTiZr refractory high-entropy alloys: Experimental investigation and crystal-plasticity modelling, Journal of Materials Science & Technology. Volume 231, 2025, Pages 134-150.
DOI: 10.1016/j.jmst.2025.02.007
Google Scholar
[9]
Jeyasimman, D., Vijayaraghavan, V. and Venkateshwara, S. Synthesis and Characterization Study of Al10Cr25Co20Ni25Fe20 High-Entropy Alloy Powders through Mechanical Alloying. J. of Materials Engineering and Performance (2024). https://doi.org/
DOI: 10.1007/s11665-024-09667-1
Google Scholar
[10]
Yeqing Wang, Rujiang Wang, Fuqiang Lv, Liang Wang, Zheng Chen, Effects of milling time and sintering temperature on the mechanical properties of 8 wt% WC/AlCoCrFeNiTi0.5 high entropy alloy matrix composite, J. of Alloys and Compd. 976 (2024) 173203.
DOI: 10.1016/j.jallcom.2023.173203
Google Scholar
[11]
Aijun Zhang, Jiesheng Han, Junhu Meng et al. Rapid preparation of AlCoCrFeN high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett. 181 (2016) 82-85
DOI: 10.1016/j.matlet.2016.06.014
Google Scholar
[12]
D. Jeyasimman, R. Narayanasamy, Effect of coarse grain content on microstructure, cold workability and strain hardening behavior of trimodaled AA 6061 nanocomposites reinforced with multi-walled carbon nanotubes, Adv. Powder Technol. 27 (2016) 1845-1851
DOI: 10.1016/j.apt.2016.06.018
Google Scholar
[13]
R.Varaprasad Kavity, D.Jeyasimman, S C.Ramesh Kumar and B M Mohan Babu. Investigation of Wear Behavior of Magnesium Reinforced with Boron Nitride Nanocomposite Using ANN. J. Mines, Metals & Fuels. 69, (2021) 190-194. https://doi.org/10.18311/ jmmf/2021/30101
DOI: 10.18311/jmmf/2021/30101
Google Scholar
[14]
[A.Syed Bava Bakrudeen, D. Jeyasimman, A. Balaji. (2023) The shape recovery behavior of compressively deformed Fe-Mn-Si-Cr-Ni alloys. Emerging Materials Research. Volume 13, Issue 2, June 2024. Pages 131-140.
DOI: 10.1680/jemmr.23.00090
Google Scholar
[15]
A.Syed Bava Bakrudeen, D.Jeyasimman, A.Balaj (2022) Effect of Compaction Pressure, Sintering Temperature and Recovery Heat Treatment Temperature of Powder Metallurgical Fe-20Mn-5Si-5Ni-8Cr Shape Memory Alloy. MRS Advances. Vol.7, Issue 4
DOI: 10.1557/s43580-022-00247-w
Google Scholar
[16]
Nabila Bouchareb, Naouel Hezil, Fouzia Hamadi, Mamoun Fellah. Effect of milling time on structural, mechanical and tribological behavior of a newly developed Ti-Ni alloy for biomedical applications. Materials Today Communications, Volume 38, 2024, 108201
DOI: 10.1016/j.mtcomm.2024.108201
Google Scholar
[17]
Franz Müller, Bronislava Gorr, Hans-Jürgen Christ, Julian Müller, Benjamin Butz, Hans Chen, Alexander Kauffmann, Martin Heilmaier, On the oxidation mechanism of refractory high entropy alloys, Corrosion Science, Volume 159, 2019, 108161.
DOI: 10.1016/j.corsci.2019.108161
Google Scholar